scholarly journals Application of Laser-Based Powder Bed Fusion for Direct Metal Tooling

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 458
Author(s):  
Nader Asnafi

The journey of production tools in cold working, hot working, and injection molding from rapid tooling to additive manufacturing (AM) by laser-based powder bed fusion (L-PBF) is described. The current machines and their configurations, tool steel powder materials and their properties, and the L-PBF process parameters for these materials are specified. Examples of production tools designed for and made by L-PBF are described. Efficient design, i.e., high tooling efficiency and performance in operation, should be the primary target in tool design. Topology and lattice structure optimization provide additional benefits. Using efficient design, L-PBF exhibits the greatest potential for tooling in hot working and injection molding. L-PBF yields high tooling costs, but competitive total costs in hot working and injection molding. Larger object sizes that can be made by L-PBF, a larger number of powder metals that are designed for different tooling applications, lower feedstock and L-PBF processing costs, further L-PBF productivity improvement, improved surface roughness through L-PBF, and secured quality are some of the targets for the research and development in the future. A system view, e.g., plants with a high degree of automation and eventually with cyber-physically controlled smart L-PBF inclusive manufacturing systems, is also of great significance.

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3465
Author(s):  
Oliver Pannitz ◽  
Felix Großwendt ◽  
Arne Lüddecke ◽  
Arno Kwade ◽  
Arne Röttger ◽  
...  

Research and development in the field of metal-based additive manufacturing are advancing steadily every year. In order to increase the efficiency of powder bed fusion of metals using a laser beam system (PBF LB/M), machine manufacturers have implemented extensive optimizations with regard to the laser systems and build volumes. However, the optimization of metallic powder materials using nanoparticle additives enables an additional improvement of the laser–material interaction. In this work, tool steel 1.2709 powder was coated with silicon carbide (SiC), few-layer graphene (FLG), and iron oxide black (IOB) on a nanometer scale. Subsequently, the feedstock material and the modified powder materials were analyzed concerning the reflectance of the laser radiation and processed by PBF-LB/M in a systematic and consistent procedure to evaluate the impact of the nano-additivation on the process efficiency and mechanical properties. As a result, an increased build rate is achieved, exhibiting a relative density of 99.9% for FLG/1.2709 due to a decreased reflectance of this modified powder material. Furthermore, FLG/1.2709 provides hardness values after precipitation hardening with only aging comparable to the original 1.2709 material and is higher than the SiC- and IOB-coated material. Additionally, the IOB coating tends to promote oxide-formation and lack-of-fusion defects.


2020 ◽  
Vol 12 (4) ◽  
pp. 1565 ◽  
Author(s):  
Oliver Pannitz ◽  
Jan T. Sehrt

In the past decade, the sales of metal additive manufacturing systems have increased intensely. In particular, PBF-LB/M systems (powder bed fusion of metals using a laser-based system) represent a technology of great industrial interest, in which metallic powders are molten and solidified layer upon layer by a focused laser beam. This leads to a simultaneous increase in demand for metallic powder materials. Due to adjusted process parameters of PBF-LB/M systems, the powder is usually procured by the system’s manufacturer. The requirement and freedom to process different feedstocks in a reproducible quality and the economic and ecological factors involved are reasons to have a closer look at the differences between the quality of the provided metallic powders. Besides, different feedstock materials require different energy inputs, allowing a sustainable process control to be established. In this work, powder quality of stainless steel 1.4404 and the effects during the processing of metallic powders that are nominally the same were analyzed and the influence on the build process followed by the final part quality was investigated. Thus, a correlation between morphology, particle size distribution, absorptivity, flowability, and densification depending on process parameters was demonstrated. Optimized exposure parameters to ensure a more sustainable and energy and cost-efficient manufacturing process were determined.


2019 ◽  
Vol 825 ◽  
pp. 1-6
Author(s):  
Tatsuaki Furumoto ◽  
Kyota Egashira ◽  
Souta Matsuura ◽  
Makoto Nikawa ◽  
Masato Okada ◽  
...  

The influence of various process parameters on the building of maraging steel powder by the selective laser melting (SLM) processes is investigated. The microstructure in the built part was observed and the influence of the heat treatment was evaluated. As results, the depth of solidified layer was higher than that of deposited metal powder, and its value was influenced with the process parameters. The microstructure in the boundary between the built part and the substrate was quite different from the built part even if the suitable heat treatment was performed.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2902 ◽  
Author(s):  
Xiaoyang Liu ◽  
Keito Sekizawa ◽  
Asuka Suzuki ◽  
Naoki Takata ◽  
Makoto Kobashi ◽  
...  

In the present study, in order to elucidate geometrical features dominating deformation behaviors and their associated compressive properties of lattice structures, AlSi10Mg lattice structures with three different unit cells were fabricated by laser powder bed fusion. Compressive properties were examined by compression and indentation tests, micro X-ray computed tomography (CT), together with finite element analysis. The truncated octahedron- unit cell (TO) lattice structures exhibited highest stiffness and plateau stress among the studied lattice structures. The body centered cubic-unit cell (BCC) and TO lattice structures experienced the formation of shear bands with stress drops, while the hexagon-unit cell (Hexa) lattice structure behaved in a continuous deformation and flat plateau region. The Hexa lattice structure densified at a smaller strain than the BCC and TO lattice structures, due to high density of the struts in the compressive direction. Static and high-speed indentation tests revealed that the TO and Hexa exhibited slight strain rate dependence of the compressive strength, whereas the BCC lattice structure showed a large strain rate dependence. Among the lattice structures in the present study, the TO lattice exhibited the highest energy absorption capacity comparable to previously reported titanium alloy lattice structures.


2020 ◽  
Vol 32 ◽  
pp. 100981 ◽  
Author(s):  
Austin T. Sutton ◽  
Caitlin S. Kriewall ◽  
Sreekar Karnati ◽  
Ming C. Leu ◽  
Joseph W. Newkirk

2021 ◽  
Vol 1016 ◽  
pp. 826-831
Author(s):  
Mu Lin Liu ◽  
Naoki Takata ◽  
Asuka Suzuki ◽  
Makoto Kobashi

The inhomogeneous microstructure and its change by annealing for an AlSi10Mg lattice structure with a body-centered cubic unit cell additively manufactured via laser powder bed fusion (LPBF) were investigated. The as-built lattice structure exhibited a cellular microstructure consisting of a number of primary α-Al phases decorated with α-Al/Si eutectic structure. The developed microstructure varied depending on the locations of the node and strut parts of the lattice structure. At the location near the bottom surface of the node part, the cellular microstructure became coarser and more equiaxed than those at the location near the top surface. At the location near the bottom surface of the strut part, the columnar α-Al phases were often elongated along the direction of the strut part. After the annealing at 300 °C for 2 h, numerous Si particles finely precipitated within the primary α-Al phases and coarsening of the eutectic Si phases occurred. After the annealing at 530 °C for 6 h, the microstructural characteristics changed significantly. A significant coarsening of the Si particles and the formation of Fe-containing intermetallic phase (β-AlFeSi) with a plate-shaped morphology occurred. The microstructures became homogeneous in the whole area of the lattice structure annealed at 530 °C for 6 h.


Sign in / Sign up

Export Citation Format

Share Document