scholarly journals Evolution of the Microstructure and Mechanical Properties of a Ti35Nb2Sn Alloy Post-Processed by Hot Isostatic Pressing for Biomedical Applications

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1027
Author(s):  
Joan Lario ◽  
Ángel Vicente ◽  
Vicente Amigó

The HIP post-processing step is required for developing next generation of advanced powder metallurgy titanium alloys for orthopedic and dental applications. The influence of the hot isostatic pressing (HIP) post-processing step on structural and phase changes, porosity healing, and mechanical strength in a powder metallurgy Ti35Nb2Sn alloy was studied. Powders were pressed at room temperature at 750 MPa, and then sintered at 1350 °C in a vacuum for 3 h. The standard HIP process at 1200 °C and 150 MPa for 3 h was performed to study its effect on a Ti35Nb2Sn powder metallurgy alloy. The influence of the HIP process and cold rate on the density, microstructure, quantity of interstitial elements, mechanical strength, and Young’s modulus was investigated. HIP post-processing for 2 h at 1200 °C and 150 MPa led to greater porosity reduction and a marked retention of the β phase at room temperature. The slow cooling rate during the HIP process affected phase stability, with a large amount of α”-phase precipitate, which decreased the titanium alloy’s yield strength.

Author(s):  
Joan Lario Femenía ◽  
Angel Vicente Escuder ◽  
Vicente Amigó Borrás

The influence of the hot isostatic pressing (HIP) post-processing step on structural and phase changes, porosity healing and mechanical strength in a powder metallurgy Ti35Nb2Sn alloy was studied. Powders were pressed at room temperature at 750 MPa, and then sintered at 1,350°C in a vacuum for 3 h. The standard HIP process at 1,200°C and 150 MPa for 3 h was performed to study its effect on a Ti35Nb2Sn powder metallurgy alloy. The influence of the HIP process and cold rate on density, microstructure, the quantity of interstitial elements, mechanical strength and Young's modulus was investigated. HIP post-processing for 2 h at 1,200°C and 150 MPa led to greater porosity reduction and a marked retention of the β phase at room temperature. The slow cooling rate during the HIP process affected phase stability, with a large amount of α”-phase precipitate, which decreased the titanium alloy’s yield strength.


1993 ◽  
Vol 322 ◽  
Author(s):  
R. Suryanarayanan ◽  
S. M. L. Sastry ◽  
K. L. Jerina

AbstractSubstantial improvements have been reported in high temperature strength and creep resistance, and room temperature fracture toughness of molybdenum disilicide (MoSi2) reinforced with ductile or brittle reinforcements. The influence of Hot Isostatic Pressing (HIP) process parameters on the mechanical properties of MoSi2 based alloys was studied. Monolithic MoSi2 powder and MoSi2 powder blended with either niobium powder or silicon carbide whisker reinforcements were consolidated by HIP at 1200 − 1400°C, 207 MPa, and 1 - 4 hrs. The HIP'ed compacts were characterized for compression strength and creep resistance at 1100-1300°C. Fracture toughness was measured on single edge notched rectangular specimens at room temperature. Mechanical properties were correlated with post-HIP microstructural features.


Author(s):  
Martin Bjurstro¨m ◽  
Carl-Gustaf Hjorth

The fabrication of near net shape powder metal (PM) components by hot isostatic pressing (HIP) has been an important manufacturing technology for steel and stainless steel alloys since about 1985. The manufacturing process involves inert gas atomization of powder, 3D CAD capsule design, sheet metal capsule fabrication and densification by HIP in very large pressure vessels. Since 1985, several thousand tonnes of parts have been produced. The major applications are found in the oil and gas industry especially in offshore applications, the industrial power generation industry, and traditional engineering industries. Typically, the components replace castings, forgings and fabricated parts and are produced in high alloy grades such as martensitic steels, austenitic stainless steels, duplex (ferritic/austenitic) stainless steels and nickel based superalloys. The application of PM/HIP near net shapes to pump barrels for medium to high pressure use has a number of advantages compared to the traditional forging and welding approach. First, the need for machining of the components is reduced to a minimum and welding during final assembly is reduced substantially. Mechanical properties of the PM/HIP parts are isotropic and equal to the best forged properties in the flow direction. This derives from the fine microstructure using powder powder and the uniform structure from the HIP process. Furthermore, when using the PM HIP process the parts are produced near net shape with supports, nozzles and flanges integrated. This significantly reduces manufacturing lead-time and gives greater design flexibility which improves cost for the final component. The PM HIP near net shape route has received approval from ASTM, NACE and API for specific steel, stainless steel and nickel base alloys. This paper reviews the manufacturing sequence for PM near net shapes and discusses the details of several successful applications. The application of the PM/HIP process to high pressure pump barrels is highlighted.


2017 ◽  
Vol 888 ◽  
pp. 42-46 ◽  
Author(s):  
Fatin Khairah Bahanurdin ◽  
Julie Juliewatty Mohamed ◽  
Zainal Arifin Ahmad

In this research, alkaline niobate known as K0.5Na0.5NbO3 (KNN) lead-free piezoelectric ceramic was synthesis by solid state reaction method which pressing at different sintering temperatures (1000 °C and 1080 °C) prepared via hot isostatic pressing (HIP)). The effect of sintering temperature on structure and dielectric properties was studied. The optimum sintering temperature (at 1080 °C for 30 minutes) using hot isostatic pressing (HIP) was successfully increase the density, enlarge the particle grain size in the range of 0.3 µm – 2.5 µm and improves the dielectric properties of K0.5Na0.5NbO3 ceramics. The larger grain size and higher density ceramics body will contribute the good dielectric properties. At room temperature, the excellent relative permittivity and tangent loss recorded at 1 MHz (ɛr = 5517.35 and tan δ = 0.954), respectively for KNN1080HIP sample. The KNN1080HIP sample is also exhibits highest relative density which is 4.485 g/cm3. The ɛr depends upon density and in this work, the density increase as the sintering temperature increase, which resulting the corresponding ɛr value also increases.


2022 ◽  
pp. 103411
Author(s):  
Alessandro Sergi ◽  
Raja H.U. Khan ◽  
Sandeep Irukuvarghula ◽  
Martina Meisnar ◽  
Advenit Makaya ◽  
...  

2020 ◽  
Vol 321 ◽  
pp. 11057
Author(s):  
Zhiyong Zhang ◽  
Yafei Ren ◽  
Kun Shi ◽  
Hongyu Liu ◽  
Shibing Liu ◽  
...  

TA15 pre-alloyed powder chosen in this paper is made by plasma rotating electrode method. The powders were used to prepare fully dense TA15 alloy ingots by the means of hot isostatic pressing(HIP) forming technology. The optimum parameter of the HIP process is 900°C /120MPa/3h. After the process of hot isostatic pressing, the powders were pressed into a fully dense ingot. An optital microscope was used to observe the microstructure of the ingot specimen and its formation mechanism was analysized. The microstructure of the TA15 alloy prepared by hot isostatic pressing of pre-alloyed powder is composed of fine α-equiaxed grains along lamellar colony boundaries. The mechanical properties exceed that of the casting level, which is close to the forging level. A typical TA15 alloy component was finally produced by HIP-PM process.


Author(s):  
Martin Bjurstro¨m ◽  
Carl-Gustaf Hjorth

The fabrication of near net shape powder metal (PM) components by hot isostatic pressing (HIP) has been an important manufacturing technology for steel and stainless steel alloys since about 1985. The manufacturing process involves inert gas atomization of powder, 3D CAD capsule design, sheet metal capsule fabrication and densification by HIP in very large pressure vessels. Since 1985, several thousand tonnes of parts have been produced. The major applications are found in the oil and gas industry especially in offshore applications, the industrial power generation industry, and traditional engineering industries. Typically, the components replace castings, forgings and fabricated parts and are produced in high alloy grades such as martensitic steels, austenitic stainless steels, duplex (ferritic/austenitic) stainless steels and nickel based superalloys. The application of PM/HIP near net shapes to pump barrels for medium to high pressure use has a number of advantages compared to the traditional forging and welding approach. First, the need for machining of the components is reduced to a minimum and welding during final assembly is reduced substantially. Mechanical properties of the PM/HIP parts are isotropic and equal to the best forged properties in the flow direction. This derives from the fine microstructure using powder powder and the uniform structure from the HIP process. Furthermore, when using the PM HIP process the parts are produced near net shape with supports, nozzles and flanges integrated. This significantly reduces manufacturing lead-time and gives greater design flexibility which improves cost for the final component. The PM HIP near net shape route has received approval from ASTM, NACE and API for specific steel, stainless steel and nickel base alloys. This paper reviews the manufacturing sequence for PM near net shapes and discusses the details of several successful applications. The application of the PM/HIP process to high pressure pump barrels is highlighted.


Materials ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 328 ◽  
Author(s):  
Liming Tan ◽  
Guoai He ◽  
Feng Liu ◽  
Yunping Li ◽  
Liang Jiang

Sign in / Sign up

Export Citation Format

Share Document