scholarly journals A Crystal Plasticity Simulation on Strain-Induced Martensitic Transformation in Crystalline TRIP Steel by Coupling with Cellular Automata

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1316
Author(s):  
Truong Duc Trinh ◽  
Takeshi Iwamoto

In transformation-induced plasticity (TRIP) steel, the strain-induced martensitic transformation (SIMT) has a close relationship with the shear band formation. At a small length scale such as that of a crystal, the explicit analysis of the shear band structure with the formed microstructure is quite important for an adequate understanding of the SIMT. Here, a study on the microstructures formed by SIMT, related to shear band formation in both single and polycrystal TRIP steels, is presented. The constitutive equation for single crystal TRIP steel considering the transformation strain on each variant system is derived based on a rate-dependent crystal plasticity theory. To express the martensitic transformation, the cellular automata approach, including a transformation criterion acting as a local rule, is introduced. Numerical simulation is conducted with patterning processes of the martensitic phase at an infinite medium under the plane strain tension. It is found that the similar distributions of the plastic strain and the martensitic phase are dependent on the initial crystal orientation and appear as the shear band structures. In addition, the sizes of embryo and cell strongly influence the shear band formation and the martensitic volume fraction of crystal TRIP steel.

2019 ◽  
Vol 794 ◽  
pp. 71-77 ◽  
Author(s):  
Truong Duc Trinh ◽  
Takeshi Iwamoto

TRIP steel shows excellent mechanical properties such as greatly high strength, ductility and toughness by means of the appropriate combination of the strain-induced martensitic transformation (SIMT) behavior and the deformation behavior of each phase at crystal scale. In the past, the effect of grain size in the austenite on the deformation behavior of TRIP steel is investigated by introducing the grain size into a generalized model for the kinetics of SIMT. In order to validate the size-dependent kinetics modelling, it is necessary to simulate the deformation and SIMT behavior of the polycrystalline for the different grain size at the crystal scale. This study focuses on an investigation of SIMT behavior in polycrystalline TRIP steel by finite element simulation. The constitutive formula for monocrystalline TRIP steel including transformation strain in each variant system derived on the basis of the continuum crystal plasticity theory is applied. For the polycrystalline model, Voronoi tessellation is employed. The deformation behavior with a patterning process of martensitic phase in two different numbers of grains with initial crystal orientations for describing the deformation-related length scale is simulated under plane strain condition with two planar slip systems by a cellular automata approach.


2021 ◽  
Vol 199 ◽  
pp. 109416
Author(s):  
Xiaoyang Liu ◽  
Takafumi Wada ◽  
Asuka Suzuki ◽  
Naoki Takata ◽  
Makoto Kobashi ◽  
...  

2002 ◽  
Vol 125 (1) ◽  
pp. 12-17 ◽  
Author(s):  
R. Kubler ◽  
M. Berveiller ◽  
M. Cherkaoui ◽  
K. Inal

During the martensitic transformation in elastic-plastic materials, the local transformation strain as well as the plastic flow inside austenite are strongly related with the crystallographic orientation of the austenitic lattice. Two mechanisms involved in these materials, i.e., plasticity by dislocation motion and martensitic phase formation are coupled through kinematical constraints so that the lattice spin of the austenitic grains is different from the one due to classical slip. In this work, the lattice spin ω˙eA of the austenitic grains is related with the slip rate on the slip systems of the two phases, γ˙A and γ˙M, the evolution of the martensite volume fraction f˙ and the overall rotation rate Ω˙ of the grains. This new relation is integrated in a micromechanical model developed for unstable austenite in order to predict the evolution of the austenite texture during TRansformation Induced Plasticity (TRIP). Results for the evolution of the lattice orientation during martensitic transformation are compared with experimental data obtained by X-ray diffraction on a 304 AISI steel.


1999 ◽  
Vol 66 (1) ◽  
pp. 3-9 ◽  
Author(s):  
V. Tvergaard

Analyses of plastic instabilities are reviewed, with focus on results in structural mechanics as well as continuum mechanics. First the basic theories for bifurcation and post-bifurcation behavior are briefly presented. Then, localization of plastic flow is discussed, including shear band formation in solids, localized necking in biaxially stretched metal sheets, and the analogous phenomenon of buckling localization in structures. Also some recent results for cavitation instabilities in elastic-plastic solids are reviewed.


2004 ◽  
Vol 45 (3) ◽  
pp. 449-452
Author(s):  
M. N. Vereshchagin ◽  
S. N. Dub ◽  
V. G. Shepelevich ◽  
O. M. Ostrikov

Sign in / Sign up

Export Citation Format

Share Document