scholarly journals Deformation Behavior and Dynamic Recrystallization of Mg-1Li-1Al Alloy

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1696
Author(s):  
Xiaoyan Feng ◽  
Xue Pang ◽  
Xu He ◽  
Ruihong Li ◽  
Zili Jin ◽  
...  

In this paper, the hot workability of Mg-1Li-1Al (LA11) alloy is assessed through a uniaxial compression test in a temperature range from 200 to 400 °C and a strain rate, έ, of 1–0.01 s−1. The present study reveals that flow stress increases when the strain rate increases and deformation temperature decreases. Based on the hyperbolic sine equation, the flow stress constitutive equation of this alloy under high-temperature deformation is established. The average activation energy was 116.5 kJ/mol. Avrami equation was employed to investigate the dynamic recrystallization (DRX). The DRX mechanism affected by the deformation conditions and Zener–Hollomon parameters is revealed. Finally, the relationship between DRX volume fraction and deformation parameter is verified based on microstructure evolution, which is consistent with the theoretical prediction.

2011 ◽  
Vol 399-401 ◽  
pp. 240-244
Author(s):  
Yue Zang ◽  
Shu Xia Li ◽  
Yi Kun Yang ◽  
Xue Ping Ren

The high temperature deformation law of nitriding steel 25Cr5MoA over the strain rate range 0.001S-1~20S-1and temperature range 850°C to 1150°C was studied in the thermal simulation testing machine Gleeble-1500. Under a certain strain rate and a certain deformation degree, the flow stress decreased with the increase of deformation temperature. Work hardening of nitriding steel 25Cr5MoA was strong when the true strain was less than 0.2, otherwise the flow stress increased slowly, even dropped. High temperature deformation flow stress of nitriding steel 25Cr5MoA was influenced by the deformation temperature and strain rate. When the strain rate was 0.1S-1, true stress-true strain curve exhibited a dynamic recrystallization model, and with the increase of deformation temperature, peak flow stress shift left. When deformation degree was 0.69, the strain rate was 1S-1, and when deformation temperature was in the region of 850°C~1050°C, true stress-true strain curve exhibited a dynamic recovery model. And when the deformation temperature was in the region of 1100°C~1150°C, it showed a dynamic recrystallization model. Dynamic recrystallization diagrams of nitriding steel 25Cr5MoA were also established.


2013 ◽  
Vol 652-654 ◽  
pp. 1471-1477
Author(s):  
Zhen Yi Huang ◽  
Fu Qiang Chen ◽  
Ping Wang

The single-directional and single-pass compression test were conducted on SA516GR70 vessel steel by a Gleeble-3500 thermal-mechanical simulator with the parameters of 800-1100 oC and 0.01-5 s-1. The influence of deformation temperatures and strain rates on the flow stress and the evolution of dynamic recrystallization of the observed steel were investigated. The results showed that the work hardening, dynamic recovery and dynamic recrystallization softening processes might be occurred successively or simultaneously with the strain increasing. The flow stress-strain curves for the compressed steel can be divided into work hardening stage, transition stage, softening stage and steady-state stage. The dynamic recrystallization occurred in the deformation samples when the observed steel was compressed at above temperatures and strain rates. At a certain deformation temperature, increasing the strain rates was helpful to increase the volume fraction of the dynamic recrystallization and to refine the grains. At a certain strain rate, decreasing the deformation temperatures was helpful to refine and homogenize the macrostructures. The deformation activation energy was 377 kJ/mol and the equation of hot deformation was built by analysing stress-strain curve of SA516GR70 steel.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 288
Author(s):  
Nam-Seok Kim ◽  
Kweon-Hoon Choi ◽  
Seung-Yoon Yang ◽  
Seong-Ho Ha ◽  
Young-Ok Yoon ◽  
...  

A hot compression test of new Al-6Mg and Al-8Mg alloys was conducted to understand the dynamic recrystallization (DRX) behavior by Mg contents. To investigate the hot workability of Al-Mg with high Mg contents, the hot deformation behavior of Al-6Mg and Al-8Mg alloys was analyzed by a hot compression test in the temperature range of 300–450 °C, and the strain rate range of 10−3–100/s. Subsequently, high-temperature deformation behavior was investigated through the processing map and microstructure observation. In this study, the results have shown that, as the Mg contents increase, the maximum and yield strength increase while rapid flow softening after the peak strain has been observed due to accelerated dynamic recrystallization (DRX). Finally, the increase of Mg contents affects an increase of heat dissipation efficiency to be an indicator of regular deformation.


2017 ◽  
Vol 36 (7) ◽  
pp. 701-710
Author(s):  
Jun Cai ◽  
Kuaishe Wang ◽  
Xiaolu Zhang ◽  
Wen Wang

AbstractHigh temperature deformation behavior of BFe10-1-2 cupronickel alloy was investigated by means of isothermal compression tests in the temperature range of 1,023~1,273 K and strain rate range of 0.001~10 s–1. Based on orthogonal experiment and variance analysis, the significance of the effects of strain, strain rate and deformation temperature on the flow stress was evaluated. Thereafter, a constitutive equation was developed on the basis of the orthogonal analysis conclusions. Subsequently, standard statistical parameters were introduced to verify the validity of developed constitutive equation. The results indicated that the predicted flow stress values from the constitutive equation could track the experimental data of BFe10-1-2 cupronickel alloy under most deformation conditions.


2007 ◽  
Vol 539-543 ◽  
pp. 3607-3612 ◽  
Author(s):  
Jeoung Han Kim ◽  
Jong Taek Yeom ◽  
Nho Kwang Park ◽  
Chong Soo Lee

The high-temperature deformation behavior of the single-phase α (Ti-7.0Al-1.5V) and α + β (Ti-6Al-4V) alloy were determined and compared within the framework of self-consistent scheme at various temperature ranges. For this purpose, isothermal hot compression tests were conducted at temperatures between 650°C ~ 950°C to determine the effect of α/β phase volume fraction on average flow stress under hot-working condition. The flow behavior of α phase was estimated from the compression test results of single-phase α alloy whose chemical composition is close to that of α phase of Ti-6Al-4V alloy. On the other hand, the flow stress of β phase in Ti-6Al-4V was predicted by using self-consistent method. The flow stress of α phase was higher than that of β phase above 750°C, while the β phase revealed higher flow stress than α phase at 650°C. Also, at temperature above 750°C, the predicted strain rate of β phase was higher than that of α phase. It was found that the relative strength between α and β phase significantly varied with temperature.


2010 ◽  
Vol 638-642 ◽  
pp. 3616-3621 ◽  
Author(s):  
K.P. Rao ◽  
Y.V.R.K. Prasad ◽  
Norbert Hort ◽  
Karl Ulrich Kainer

The hot working behavior of Mg-3Sn-2Ca alloy has been investigated in the temperature range 300–500 oC and strain rate range 0.0003–10 s-1, with a view to evaluate the mechanisms and optimum parameters of hot working. For this purpose, a processing map has been developed on the basis of the flow stress data obtained from compression tests. The stress-strain curves exhibited steady state behavior at strain rates lower than 0.01 s-1 and at temperatures higher than 350 oC and flow softening occurred at higher strain rates. The processing map exhibited two dynamic recrystallization domains in the temperature and strain rate ranges: (1) 300–420 oC and 0.0003–0.003 s-1, and (2) 420–500 oC and 0.003–1.0 s-1, the latter one being useful for commercial hot working. Kinetic analysis yielded apparent activation energy values of 161 and 175 kJ/mole in domains (1) and (2) respectively. These values are higher than that for self-diffusion in magnesium suggesting that the large volume fraction of intermetallic particles CaMgSn present in the matrix generates considerable back stress. The processing map reveals a wide regime of flow instability which gets reduced with increase in temperature or decrease in strain rate.


2013 ◽  
Vol 592-593 ◽  
pp. 724-727
Author(s):  
Andrzej Nowotnik ◽  
Paweł Rokicki ◽  
Paweł Pędrak ◽  
Slawomir Kotowski ◽  
Jan Sieniawski ◽  
...  

Variations of a true stress vs. true strain illustrate behaviour of materials during plastic deformation. Stress-strain relationship is generally evaluated by a torsion, compression and tensile tests. Results of these tests provide crucial information pertaining to the stress values which are necessary to run deformation process at specified temperature and cooling rate. Uniaxial compression tests at temperatures below the γ solvus were conducted on nickel based superalloy CMSX-4, to study the effect of temperature and strain rate on its flow stress. On the basis of received flow stress values activation energy of a high-temperature deformation process was estimated. Mathematical dependences (σpl -T i σpl - ἐ) and compression data were used to determine material constants. These constants allow to derive a formula that describes the relationship between strain rate, deformation temperature and true stress.


2006 ◽  
Vol 519-521 ◽  
pp. 1285-1290 ◽  
Author(s):  
Ehab Samuel ◽  
John J. Jonas ◽  
F.H. Samuel ◽  
S.R. MacEwen

Superplasticity refers to a high temperature deformation process involving a marked sensitivity of the flow stress to the imposed strain rate, with resulting enhanced ductility. Although conventionally associated with fine-grained materials, superplasticity has recently been observed in coarse-grained alloys. The present research involves the deformation behavior of Al-Mg base alloys, where superpure Al-3%Mg and Al-5%Mg, and commercial Al 5056 were selected for study. The results for the Al-5%Mg and Al 5056 alloys are presented in this article. Flat sheet-type samples were tensile tested to 10% strain at increasing temperatures and at prescribed strain rates (0.001/s, 0.01/s, and 0.1/s). The dependence of flow stress on temperature was found to display some unusual characteristics. This behavior is interpreted as resulting from the occurrence of dynamic strain ageing (DSA). The aim of the overall study is to determine the relation between DSA and superplasticity in coarse-grained Al-Mg alloys. This will, in turn, lead to the control of the strain ageing behavior so as to produce the largest possible values of strain rate sensitivity (and, hence, elongation).


2015 ◽  
Vol 782 ◽  
pp. 61-70
Author(s):  
You Jing Zhang ◽  
Hong Nian Cai ◽  
Xing Wang Cheng ◽  
Shuang Zan Zhao

The high temperature deformation and fracture behavior of ultra-high strength G33 steel under high strain rate compression are investigated by means of a split Hopkinson p ressure bar. Impact tests are performed at strain rates of 1000/s and 2200/s and at temperatures ranging from 25°C to 700°C. The SEM and TEM techniques are also used to analyze the microstructure evolution of the adiabatic shear band (ASB) and fracture characteristics of the deformed specimens at high temperature. The experimental results indicate that the flow stress of G33 steel is significantly dependent on temperatures and strain rates. The flow stress of G33 steel increases with the increase of strain rates, but decreases with the increase of temperatures. The strain rate sensitivity is more pronounced at the low temperature of 25°C. In addition, G33 steel is more liable to fracture at high temperatures than at 25°C. Observations of microstructure show two well-developed symmetric parabolic adiabatic shear bands on the longitudinal cross-section of the cylindrical specimen deformed at the temperature of 700°C and at the strain rate of 2200/s. Within the ASB, the width of the fine equiaxed grain structure is about 7μm. The size of those equiaxed grains is approximately 100nm. The fracture analysis results indicate that the ASBs are the predominant deformation and the specimens fracture along adiabatic shear bands. The fracture surfaces of the deformed G33 steel specimens are characterized by two alternating zones: rough dimple zone and relatively smooth shear zone. Further observations reveal that smooth shear zones consist of severely sheared dimples.


2007 ◽  
Vol 546-549 ◽  
pp. 749-754 ◽  
Author(s):  
Hui Zhong Li ◽  
Xin Ming Zhang ◽  
Min Gan Chen ◽  
Ying Liu ◽  
Hui Gao

The deformation behavior of 2519 aluminum alloy was studied by isothermal compression by Gleeble-1500 simulator in the temperature range from 300 to 450°C under the strain rates of 0.01~10s-1. The results showed that the flow stress was controlled by strain rate and deformation temperature. The flow stress increased with strain rate and decreased with deformation temperature. The flow stress of 2519 aluminum alloy increased with strain and to the constant values at three strain rates of 0.01 s-1,0.1 s-1and1 s-1, indicating the dynamic recovery to occur. The flow stress decreased after a peak value with increase of strain at strain rate 10s-1 and deformation temperature higher than 350°C, showing partly dynamic recrystallization. The flow stress of 2519 aluminum alloy during high temperature deformation can be represented by Zener-Hollomon parameter.


Sign in / Sign up

Export Citation Format

Share Document