scholarly journals First-Principles Calculations of Thermal and Electrical Transport Properties of bcc and fcc Dilute Fe–X (X = Al, Co, Cr, Mn, Mo, Nb, Ni, Ti, V, and W) Binary Alloys

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1988
Author(s):  
Yang Lin ◽  
Xiaoyu Chong ◽  
Yingchun Ding ◽  
Yunxuan Zhou ◽  
Mengdi Gan ◽  
...  

The adiabatic shear sensitivity of ultra-high-strength steels is closely related to their thermal conductivity. Therefore, it is essential to investigate the effects of alloying elements on the thermal conductivity of ultra-high-strength steel. In this study, the variation in the scattering behavior of electrons with respect to temperature and the mechanism of three-phonon scattering were considered for obtaining the contributions of electrons and phonons, respectively, to the thermal conductivity of alloys while solving the Boltzmann transport equation. By predicting the effect of ten alloying elements on the electronic thermal conductivity (κe), it was found that, at 1200 K, the doping of iron with Ni and Cr endowed iron with κe values of 24.9 and 25.7 W/m K, respectively. In addition, the prediction for the lattice thermal conductivity (κL), which was performed without considering point defect scattering, indicated that elements such as Al, Co, Mn, Mo, V, and Cr demonstrate a positive effect on the lattice thermal conductivity, with values of 3.6, 3.7, 3.0, 3.1, 3.9, and 3.8 W/m K, respectively. The contribution of κL is only 5–15% of the total thermal conductivity (κtotal). The alloying elements exhibited a similar effect on κtotal and κe. Δκi; the change in thermal conductivity with respect to κ0 owing to the alloying element i was evaluated according to the total thermal conductivity. These values were used to understand the effect of the concentration of alloying elements on the thermal conductivity of iron. The Δκi values of Ni, Co, and W were 6.44, 6.80, and 6.06, respectively, indicating a reduction in the thermal conductivity of iron. This paper provides theoretical guidance for the design of ultra-high-strength steels with a high thermal conductivity.

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3854 ◽  
Author(s):  
Jun-Young Cho ◽  
Muhammad Siyar ◽  
Woo Chan Jin ◽  
Euyheon Hwang ◽  
Seung-Hwan Bae ◽  
...  

SnSe is considered as a promising thermoelectric (TE) material since the discovery of the record figure of merit (ZT) of 2.6 at 926 K in single crystal SnSe. It is, however, difficult to use single crystal SnSe for practical applications due to the poor mechanical properties and the difficulty and cost of fabricating a single crystal. It is highly desirable to improve the properties of polycrystalline SnSe whose TE properties are still not near to that of single crystal SnSe. In this study, in order to control the TE properties of polycrystalline SnSe, polycrystalline SnSe–SnTe solid solutions were fabricated, and the effect of the solid solution on the electrical transport and TE properties was investigated. The SnSe1−xTex samples were fabricated using mechanical alloying and spark plasma sintering. X-ray diffraction (XRD) analyses revealed that the solubility limit of Te in SnSe1−xTex is somewhere between x = 0.3 and 0.5. With increasing Te content, the electrical conductivity was increased due to the increase of carrier concentration, while the lattice thermal conductivity was suppressed by the increased amount of phonon scattering. The change of carrier concentration and electrical conductivity is explained using the measured band gap energy and the calculated band structure. The change of thermal conductivity is explained using the change of lattice thermal conductivity from the increased amount of phonon scattering at the point defect sites. A ZT of ~0.78 was obtained at 823 K from SnSe0.7Te0.3, which is an ~11% improvement compared to that of SnSe.


2006 ◽  
Vol 510-511 ◽  
pp. 1070-1073 ◽  
Author(s):  
Il Ho Kim ◽  
J.B. Park ◽  
Tae Whan Hong ◽  
Soon Chul Ur ◽  
Young Geun Lee ◽  
...  

Zn4Sb3 was successfully produced by a hot pressing technique, and its thermoelectric properties were investigated in the temperature range from 4K to 300K. The Seebeck coefficient, electrical conductivity, thermal conductivity, and thermoelectric figure of merit showed a discontinuity in variation at 242K, indicating the α-Zn4Sb3 to β-Zn4Sb3 phase transformation. Lattice thermal conductivity was found to be dominant in the total thermal conductivity of Zn4Sb3. Therefore, it is expected that thermoelectric properties can be improved by reducing the lattice thermal conductivity inducing phonon scattering centers.


2015 ◽  
Vol 1735 ◽  
Author(s):  
M. Upadhyaya ◽  
Z. Aksamija

ABSTRACTSilicon-germanium (SiGe) superlattices (SLs) have been proposed for application as efficient thermoelectrics because of their low thermal conductivity, below that of bulk SiGe alloys. However, the cost of growing SLs is prohibitive, so nanocomposites, made by a ball-milling and sintering, have been proposed as a cost-effective replacement with similar properties. Lattice thermal conductivity in SiGe SLs is reduced by scattering from the rough interfaces between layers. Therefore, it is expected that interface properties, such as roughness, orientation, and composition, will play a significant role in thermal transport in nanocomposites and offer many additional degrees of freedom to control the thermal conductivity in nanocomposites by tailoring grain size, shape, and crystal angle distributions. We previously demonstrated the sensitivity of the lattice thermal conductivity in SLs to the interface properties, based on solving the phonon Boltzmann transport equation under the relaxation time approximation. Here we adapt the model to a broad range of SiGe nanocomposites. We model nanocomposite structures using a Voronoi tessellation to mimic the grains and their distribution in the nanocomposite and show excellent agreement with experimentally observed structures, while for nanowires we use the Monte Carlo method to solve the phonon Boltzmann equation. In order to accurately treat phonon scattering from a series of atomically rough interfaces between the grains in the nanocomposite and at the boundaries of nanowires, we employ a momentum-dependent specularity parameter. Our results show thermal transport in SiGe nanocomposites and nanowires is reduced significantly below their bulk alloy counterparts.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Eric Osei-Agyemang ◽  
Challen Enninful Adu ◽  
Ganesh Balasubramanian

AbstractAn emerging chalcogenide perovskite, CaZrSe3, holds promise for energy conversion applications given its notable optical and electrical properties. However, knowledge of its thermal properties is extremely important, e.g. for potential thermoelectric applications, and has not been previously reported in detail. In this work, we examine and explain the lattice thermal transport mechanisms in CaZrSe3 using density functional theory and Boltzmann transport calculations. We find the mean relaxation time to be extremely short corroborating an enhanced phonon–phonon scattering that annihilates phonon modes, and lowers thermal conductivity. In addition, strong anharmonicity in the perovskite crystal represented by the Grüneisen parameter predictions, and low phonon number density for the acoustic modes, results in the lattice thermal conductivity to be limited to 1.17 W m−1 K−1. The average phonon mean free path in the bulk CaZrSe3 sample (N → ∞) is 138.1 nm and nanostructuring CaZrSe3 sample to ~10 nm diminishes the thermal conductivity to 0.23 W m−1 K−1. We also find that p-type doping yields higher predictions of thermoelectric figure of merit than n-type doping, and values of ZT ~0.95–1 are found for hole concentrations in the range 1016–1017 cm−3 and temperature between 600 and 700 K.


2020 ◽  
Vol 10 (5) ◽  
pp. 602-609
Author(s):  
Adil H. Awad

Introduction: A new approach for expressing the lattice thermal conductivity of diatomic nanoscale materials is developed. Methods: The lattice thermal conductivity of two samples of GaAs nanobeam at 4-100K is calculated on the basis of monatomic dispersion relation. Phonons are scattered by nanobeam boundaries, point defects and other phonons via normal and Umklapp processes. Methods: A comparative study of the results of the present analysis and those obtained using Callaway formula is performed. We clearly demonstrate the importance of the utilised scattering mechanisms in lattice thermal conductivity by addressing the separate role of the phonon scattering relaxation rate. The formulas derived from the correction term are also presented, and their difference from Callaway model is evident. Furthermore their percentage contribution is sufficiently small to be neglected in calculating lattice thermal conductivity. Conclusion: Our model is successfully used to correlate the predicted lattice thermal conductivity with that of the experimental observation.


2021 ◽  
Vol 174 ◽  
pp. 111035
Author(s):  
Ajit Kumar Pramanick ◽  
Hrishikesh Das ◽  
Ji-Woo Lee ◽  
Yeyoung Jung ◽  
Hoon-Hwe Cho ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15486-15496
Author(s):  
Enamul Haque

The layered structure, and presence of heavier elements Rb/Cs and Sb induce high anharmonicity, low Debye temperature, intense phonon scattering, and hence, low lattice thermal conductivity.


Author(s):  
Dhruv Singh ◽  
Jayathi Y. Murthy ◽  
Timothy S. Fisher

Using the linearized Boltzmann transport equation and perturbation theory, we analyze the reduction in the intrinsic thermal conductivity of few-layer graphene sheets accounting for all possible three-phonon scattering events. Even with weak coupling between layers, a significant reduction in the thermal conductivity of the out-of-plane acoustic modes is apparent. The main effect of this weak coupling is to open many new three-phonon scattering channels that are otherwise absent in graphene. The highly restrictive selection rule that leads to a high thermal conductivity of ZA phonons in single-layer graphene is only weakly broken with the addition of multiple layers, and ZA phonons still dominate thermal conductivity. We also find that the decrease in thermal conductivity is mainly caused by decreased contributions of the higher-order overtones of the fundamental out-of-plane acoustic mode. Moreover, the extent of reduction is largest when going from single to bilayer graphene and saturates for four layers. The results compare remarkably well over the entire temperature range with measurements of of graphene and graphite.


Sign in / Sign up

Export Citation Format

Share Document