scholarly journals Optimum Magnetic Properties of Non-Oriented Electrical Steel Produced by Compact Strip Production Process

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Junqiang Cong ◽  
Feihu Guo ◽  
Jialong Qiao ◽  
Shengtao Qiu ◽  
Haijun Wang

Optimum grain size and effects of crystallographic textures on magnetic properties of Fe-0.65%Si non-oriented electrical steel produced by compact strip production (CSP) process were investigated by optical microscope, electron backscatter diffraction (EBSD), and X-ray diffraction (XRD) techniques. Magnetic induction and core loss show a decreasing trend with the increase of grain size, and grain sizes for optimal magnetic properties are in the range of 26–30 μm. Core loss would be mainly affected by grain size, whereas crystallographic texture would primarily affect magnetic flux density. Magnetic properties increase with increasing of texture factor (volume fraction ratio of {100}/{111}) and magnetic texture factor (volume fraction ratio of <100>/<111>), and increasing with the decrease of A-parameter (minimum angle between magnetization direction and the closest <100> direction) and A(h→), respectively. Simultaneously, with increasing of A-parameter and A(h→), a linear decrease of B50 was obtained.

2016 ◽  
Vol 852 ◽  
pp. 38-48
Author(s):  
Cheng Yi Zhu ◽  
Xian Hong Chen ◽  
Li Fang Zhang ◽  
Xiao Yu Liang ◽  
Feng Zhang

Effects of RE addition on deoxidation and desulphurization efficiency, precipitation behaviors of the inclusions, microstructure and magnetic properties of the finished sheets have been investigated for no-oriented electrical steel produced in industrial scale. The most suitable addition amount of RE alloy added in the electrical steel bearing is proposed for excellent deoxidation and desulphurization efficiency. RE added into the steel can form larger and higher melt point RE oxides, RE sulfides and RE oxysulfides inclusions removing from the bath by floating which decreases the numbers and increases the size of the fine inclusions. The average size of the inclusions remained in the steel is 0.8μm~1.4μm. RE content affects grain size by influencing number and size of fine inclusions in the finished steel sheets. The magnetic flux density of the finished steel sheets dereases with the increase of RE content while the lowest core loss of it has an optimum RE content in the steel. In the steel bearing 1.15wt% Si, the content of RE should be strictly controlled in the range from 20×10-4 wt% to 60×10-4 wt%.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1301
Author(s):  
Jia-long Qiao ◽  
Fei-hu Guo ◽  
Jin-wen Hu ◽  
Li Xiang ◽  
Sheng-tao Qiu ◽  
...  

Nitrogen and Sulfur in non-oriented electrical steel would form precipitates, which would severely affect its magnetic properties. Precipitates in compact strip production (CSP) process non-oriented electrical steel were investigated using a transmission electron microscope (TEM) and scanning electron microscopy (SEM). The precipitation mechanism and influence on grain growth were analyzed experimentally and theoretically. The results showed that the main particles in steel were AlN, TiN, MnS, Cu2S, and fine oxide inclusions. The spherical or quasi-spherical of MnS and Cu2S were more liable to precipitate along grain boundaries. During the soaking process, the amount of MnS precipitated on the grain boundary was much larger than that of Cu2S. AlN and TiN in cubic shape precipitated inside grains or grain boundaries. Precipitates preferentially nucleated at grain boundaries, and TiN, MnS mainly precipitated during soaking. In the subsequent processes after soaking, AlN and Cu2S would precipitate unceasingly with the decrease in the average size. The distribution density, the volume fraction, and the average size of the precipitates in the annealed sheets were 9.08 × 1013/cm3, 0.06%, and 54.3 nm, respectively. Precipitates with the grain size of 30–500 nm hindered the grain growth, the grains with 100–300 nm played a major role in inhibiting the grain growth, and the grains with the grain size of 70–100 nm took the second place.


2011 ◽  
Vol 702-703 ◽  
pp. 595-598
Author(s):  
Francisco N.C. Freitas ◽  
Manoel Ribeiro da Silva ◽  
Sergio S.M. Tavares ◽  
Hamilton F.G. Abreu

Non-oriented grain type electrical steels are used mainly in electrical rotating machines such as motors and compressors, in which the magnetization direction rotates 360 ° every cycle while remaining in the plane of the plate. The performance of these devices is affected by crystallographic texture of electrical steels due to strong anisotropy of magnetic properties. The electrical steel is supplied in the form of plates which are processed by cold rolling and subsequent annealing. Both, cold rolling and annealing directly influence the formation of crystallographic texture components. During annealing, recrystallization occurs, and this phenomenon gives rise to changes in texture that influences the quality of the final product and its application. Several works have been published in the study of the evolution of crystallographic texture and grain size in this type of electrical steel. In this work, samples have been taken in industrial conditions at various temperatures during the annealing in a coil box. Electrical steel samples cold rolled with reductions of 50% and 70% in thickness were removed during the process of annealing, and the evolution of texture with increasing temperature was studied. Aspects related to recrystallization, grain size and the evolution of texture and magnetic properties were discussed. Texture and recrystallization were studied by X-ray diffraction and electron backscatter diffraction (EBSD). The magnetic properties were measured in a vibrating sample magnetometer.


2012 ◽  
Vol 602-604 ◽  
pp. 435-440 ◽  
Author(s):  
Na Li ◽  
Li Xiang ◽  
Pei Zhao

The effect of antimony on the structure, texture and magnetic properties of high efficiency non-oriented electrical steel were investigated. The results showed that antimony played an important role on inhibiting the grain growth and enhancing the fraction of favorable texture in the annealed steels. With the increase of antimony content, core loss of specimens monotonously increased and the magnetic flux density increased firstly and then decreased. The magnetic properties of specimen results showed that the magnetic flux density in the steel with 0.12% antimony reached the maximum value, while the core loss didn’t increase obviously. However, when the antimony content in steel reached 0.22%, the magnetic properties deteriorated significantly. This is maybe that the addition of antimony in steels inhibited the development of {111} texture content and increased the intensity of Goss and {100} texture on the grain boundary.


2013 ◽  
Vol 753 ◽  
pp. 522-525
Author(s):  
Dirceni Souza Costa Amorim ◽  
Marco Antônio Cunha ◽  
Dogoberto Brandão Santos ◽  
João Henrique Brandão ◽  
Berenice Mendonça Gonzalez

The effects of inter-pass ageing temperature during cold rolling on structure, magnetic properties and mechanical properties of high permeability grain oriented electrical steel was studied. The samples were processed in a single-stage cold rolling to 0.27 mm thickness, with 88 % reduction, without and with inter-pass ageing treatment in order to determine the magnetic properties. To determine the changes in mechanical properties due to strain ageing, the samples underwent overlapped ageing, after pre-strain by rolling, under the same conditions of inter-pass ageing and then were subjected to tensile test. The effect of strain ageing was more pronounced in the thickness of 0.7 mm and the largest variation in yield strength was at 200°C in all evaluated thicknesses. At this temperature the largest amount of {110} orientation after primary recrystallization was also observed, as well as the lowest final grain size and consequently the best results of core loss. The magnetic induction had almost no alterations.


2014 ◽  
Vol 887-888 ◽  
pp. 252-256
Author(s):  
Zhun Li ◽  
Jing Liu ◽  
Shi De Li ◽  
Ze Lin Zheng

A high grade non-oriented electrical steel final annealing product was processed by stress relief annealing experiments under pure hydrogen atmosphere using different process parameters. The samples were compared in the aspects of magnetic properties and anisotropy, then analyzed the phenomena concerned with grain size, texture and precipitates aspects. The experiments showed that the samples magnetic properties were most improved in the 850 degrees stress relief annealing experiment, thus providing a reference method for non-oriented silicon steel stress relief annealing experiments and to obtain low core loss non-oriented silicon steel.


1989 ◽  
Vol 11 (2-4) ◽  
pp. 159-170 ◽  
Author(s):  
M. Shiozaki ◽  
Y. Kurosaki

The anisotropy of magnetic properties in non-oriented electrical steel sheets can be evaluated by measuring Epstein specimens in the radial directions. The magnetic properties measured on ring cores are practically equal to the approximate values of magnetic properties determined by Epstein specimens in the radial directions. Non-oriented electrical steel sheets with anisotropy are not desirable for motors but are suitable for transformers and fluorescent lamp ballasts. The core loss and magnetic induction as measured with ring specimens are better with non-oriented electrical steel sheets with anisotropy than with non-oriented electrical steel sheets with random crystallographic orientation. This phenomenon depends on the texture change of the product.


2014 ◽  
Vol 33 (2) ◽  
pp. 115-121 ◽  
Author(s):  
Yong Wan ◽  
Wei-qing Chen ◽  
Shao-jie Wu

AbstractThe effects of lanthanum and boron on the inclusion size distribution, microstructure, texture and magnetic properties of three non-oriented electrical steels have been studied. After final annealing, lanthanum effectively inhibited the precipitation of MnS precipitates and promoted the growth of grains, an addition of 0.0041 wt.% boron led to the precipitation of Fe2B particles and inhibited grain growth. On the other hand, steel containing 0.0055 wt.% lanthanum had the strongest {100} and {111} fiber texture and the weakest {112}〈110〉 texture among the steels. Compared to steel without lanthanum and boron, steel with 0.0050 wt.% lanthanum and 0.0041 wt.% boron obtained slightly stronger intensities of {100} and {111} fiber texture, and a little weaker intensity of {112}〈110〉 texture. Steel containing 0.0055 wt.% lanthanum achieved the best magnetic properties, whose core loss and magnetic flux density were 4.268 W/kg and 1.768 T, respectively.


2020 ◽  
Vol 993 ◽  
pp. 638-645
Author(s):  
Shuai Feng ◽  
Yan An ◽  
Zong Xiang Wang ◽  
Kai Sun ◽  
Run Hua Fan

In this work, the insulating SiO2 was coated successfully on the surface of reduced iron particles by a sol-gel method to decrease the core loss at low frequency. The scanning electron microscope images and elements analysis confirm that the surface of iron powders particles were covered by a thin insulating layer in the form of uniform core-shell structure. The samples were annealed at 400 °C in N2 atmosphere to obtain better magnetic properties. The annealed SMCs with 10 mL/h dropping rate of TEOS have optimum magnetic properties with low core loss Ps of 280.89 W/kg and high saturation magnetic flux density Bs of 1.038 T at 1000 Hz.


Sign in / Sign up

Export Citation Format

Share Document