scholarly journals Effect of Iron Impurities on Magnetic Properties of Nanosized CeO2 and Ce-Based Compounds

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 222 ◽  
Author(s):  
Yvonna Jiraskova ◽  
Jiri Bursik ◽  
Pavel Janos ◽  
Jiri Lunacek ◽  
Artur Chrobak ◽  
...  

CeO2 samples prepared by three technological procedures from the same cerium source, namely cerium (III) nitrate hexahydrate, are studied from the viewpoint of structure, chemical and phase composition, and micro- and macro-magnetic properties. The scanning and transmission electron microscopies completed by energy-dispersive X-ray (EDX) analysis yield nano-structural natures and homogenous chemical compositions of the ceria samples, confirmed also by X-ray diffraction. The diamagnetic, paramagnetic, and ferromagnetic phases in all samples follow from an analysis of the room- and low-temperature measurements of hysteresis loops. Iron impurities in ppm amounts are clearly detected by 57Fe Mössbauer spectrometry not only in the ceria samples but also in the selected input chemicals used for their preparation. This contributes to the explanation of the magnetic behaviour of nanosized ceria.

2012 ◽  
Vol 186 ◽  
pp. 206-211
Author(s):  
Daniela Derewnicka ◽  
Piotr Dłużewski ◽  
Marzena Spyra ◽  
Hanna Krztoń

This study investigated alloys with the composition Nd9Fe77B14 and Nd9Fe73Ti4B14 (at.%). Materials were melt spun in the form of a partially amorphous ribbon, which was subsequently annealed at 953K in order to obtain the optimum magnetic properties. The highest properties were obtained for annealing lasting 20 minutes (JHC = 913kA/m, Jr = 0,84T, BHmax = 107kJ/m3). Annealing at 953K results in simultaneous crystallisation in the whole mass of the alloy. The growth of grains is controlled by the duration of the annealing process. The objective of this work was to study the mechanisms of crystallisation and the reasons for a finer structure resulting from the presence of titanium. The phase composition was evaluated by X-ray diffraction. The microstructure was studied using a high-resolution transmission electron microscope. Detailed analysis of titanium distribution in the grains and in the grain boundaries was examined by x-ray spectrometry.


2010 ◽  
Vol 654-656 ◽  
pp. 1106-1109
Author(s):  
Ya Qiong He ◽  
Chang Hui Mao ◽  
Jian Yang

Nanocrystalline Fe-Co alloy powders, which were prepared by high-energy mechanical milling, were nitrided under the mixing gas of NH3/H2 in the temperature range from 380°C to 510°C. X-ray diffraction (XRD) was used to analyze the grain size and reaction during the processing. The magnetic properties of the nitrided powders were measured by Vibrating Sample Magnetometer (VSM). The results show that with the appearance of Fe4N phase after nitride treatment, and the grain-size of FeCo phase decreases with the increase of nitridation temperature between 380°C to 450°C.The saturation magnetization of nitrided alloy powder treated at 480°C is about 18% higher than that of the initial Fe-Co alloy powder, accompanied by the reduction of the coercivity. Transmission electron microscope (TEM) was used, attempting to further analyze the effect of Fe4N phase on microstructure and magnetic properties of the powder mixtures.


2007 ◽  
Vol 130 ◽  
pp. 171-174 ◽  
Author(s):  
Z. Stokłosa ◽  
G. Badura ◽  
P. Kwapuliński ◽  
Józef Rasek ◽  
G. Haneczok ◽  
...  

The crystallization and optimization of magnetic properties effects in FeXSiB (X=Cu, V, Co, Zr, Nb) amorphous alloys were studied by applying X-ray diffraction methods, high resolution transmission electron microscopy (HRTEM), resistometric and magnetic measurements. The temperatures of the first and the second stage of crystallization, the 1h optimization annealing temperature and the Curie temperature were determined for different amorphous alloys. Activation energies of crystallization process were obtained by applying the Kissinger method. The influence of alloy additions on optimization effect and crystallization processes was carefully examined.


2005 ◽  
Vol 498-499 ◽  
pp. 618-623 ◽  
Author(s):  
Ana Cristina Figueiredo de Melo Costa ◽  
Lucianna Gama ◽  
M.R. Morelli ◽  
Ruth Herta Goldsmith Aliaga Kiminami

Nanosized spinel nickel ferrite particles have attracted considerable attention and efforts continue to investigate them for their technological importance to the microwave industries, high speed digital tap or disk recording, repulsive suspension for use in levitated railway systems, ferrofluids, catalysis and magnetic refrigeration systems. Nanosize nickel ferrite powders (NiFe2O4) have been prepared by combustion reaction using nitrates and urea as fuel. The resulting powders were characterized by X-ray diffraction (XRD), BET, and transmission electron microscopy (TEM). The results showed nanosize nickel ferrite powders with high specific surface area (55.21 m2/g). The powders showed extensive XRD line broadening and the crystallite size calculated from the XRD line broadening was 18.0 nm. The samples were uniaxially compacted by dry pressing, sintered at 1200°C/2h and characterized by bulk density, SEM and magnetic properties measurements. The samples showed uniform microstructures with grain size of 4.45 μm, maximum flux density of 0.18T, field coercive of the 488 A/m, and hysteresis loss of 47.58 W/kg.


2010 ◽  
Vol 177 ◽  
pp. 32-36 ◽  
Author(s):  
An Rong Wang ◽  
Jian Li ◽  
Qing Mei Zhang ◽  
Hua Miao

Weak magnetic ZnFe2O4 nanoparticles were prepared by coprecipitation and treated with different concentrations of Fe(NO3)3 solution. Untreated and treated particles were studied using a vibrating sample magnetometer, transmission electron microscope, by X-ray diffraction, X-ray energy dispersive spectroscopy and X photoelectron spectroscopy. The results showed that, after treatment, the ZnFe2O4/γ-Fe2O3 forms disphase nanoparticles, with enlarged size, enhanced magnetic properties and with a surface parceled with Fe(NO3)3. The size of the particles and their magnetic properties are related to the concentration of the treatment solution. The particle size and magnetic properties could be controlled by controlling the concentration of treating solution, therefore nanoparticles can be more widely used.


2013 ◽  
Vol 275-277 ◽  
pp. 1952-1955
Author(s):  
Ling Fang Jin ◽  
Xing Zhong Li

New functional nanocomposite FePt:C thin films with FePt underlayers were synthesized by noneptaxial growth. The effect of the FePt layer on the ordering, orientation and magnetic properties of the composite layer has been investigated by adjusting FePt underlayer thickness from 2 nm to 14 nm. Transmission electron microscopy (TEM), together with x-ray diffraction (XRD), has been used to check the growth of the double-layered films and to study the microstructure, including the grain size, shape, orientation and distribution. XRD scans reveal that the orientation of the films was dependent on FePt underlayer thickness. In this paper, the TEM studies of both single-layered nonepitaxially grown FePt and FePt:C composite L10 phase and double-layered deposition FePt:C/FePt are presented.


1998 ◽  
Vol 13 (9) ◽  
pp. 2580-2587 ◽  
Author(s):  
K. H. Ryu ◽  
J-M. Yang

The characteristics of nanosized silicon nitride powders with doped Y2O3 and Al2O3 fabricated by a plasma-reacted chemical process were investigated. The chemical compositions of the powders were analyzed by wet chemical analysis. The morphology and the size distribution were determined by transmission electron microscopy (TEM). TEM with energy dispersive spectroscopy (EDS) was used to verify the existence of sintering additives in each individual particle. The crystal structure of the powders was identified by the selected area diffraction pattern (SADP). X-ray diffraction (XRD) technique was used for phase analysis and the measurement of degree of crystallinity. The characteristics of chemical bonding was analyzed by using Fourier transform infrared spectroscopy (FTIR).


2012 ◽  
Vol 05 ◽  
pp. 841-846
Author(s):  
AMIR KEYVANARA ◽  
REZA GHOLAMIPOUR ◽  
SHAMSEDIN MIRDAMADI ◽  
FARZAD SHAHRI ◽  
HOSSEIN SEPEHRI AMIN

Melt spun ribbons of Co 64 Fe 4 Ni 2 B 19 Si 8 Cr 3 alloy have been prepared and the nanocrystallization process was carried out by the heat treatment of the as spun ribbons above the crystallization temperature. Structural studies of the samples have been performed by transmission electron microscopy and X-ray diffraction. Magnetic properties of the samples and magnetoimpedance measurements were investigated and it was revealed that magnetic properties and magnetoimpedance of the samples deteriorate by the formation of nanocrystalline phases.


2013 ◽  
Vol 313-314 ◽  
pp. 254-257
Author(s):  
Ling Fang Jin ◽  
Hong Zhuang

Nonepitaxially grown FePt (x)/FePt:C thin films were synthesized, where FePt (x) (x=2, 5, 8, 11, 14 nm) layers were served as underlayers and FePt:C layer was nanocomposite with thickness of 5 nm. The effect of FePt underlayer on the ordering, orientation and magnetic properties of FePt:C thin films has been investigated by adjusting FePt underlayer thicknesses from 2 nm to 14 nm. X-ray diffraction (XRD), together with transmission electron microscopy (TEM) confirmed that the desired L10 phase was formed and films were (001) textured with FePt underlayer thickness decreased less 5 nm. For 5 nm FePt:C nanocomposite thin film with 2 nm FePt underlayer, the coercivity was 8.2 KOe and the correlation length of FePt:C nanocomposite film was 67 nm. These results reveal that the better orientation and magnetic properties for FePt:C nanocomposite films can be tuned by decreasing FePt underlayer thickness.


2001 ◽  
Vol 703 ◽  
Author(s):  
L. Bessais ◽  
C. Djéga-Mariadassou ◽  
J. Zhang ◽  
V. Lalanne ◽  
A. Percheron-Guégan

ABSTRACTThe evolution of both micro structural and magnetic properties of the Sm[BE]Co[BD][BJ] Cu powder, is studied as a function of soft co-milling time. The average grain size in the range 20 - 50 nm was determined by transmission electron microscopy coupled with x-ray diffraction using the Rietveld method. The particle shape and chemical distribution were investigated by elemental mapping, using wavelength dispersive x-ray analysis with electron microprobe analysis. The coercivity evolution shows that an optimum value of 6 kOe is obtained after 5 h co-milling. The microstructure analysis indicates that both materials are well mixed in nanometer scale. This technique appears as a potential route to synthesize nanocrystalline Sm[BE]Co[BD][BJ] isolated by non-magnetic metal Cu.


Sign in / Sign up

Export Citation Format

Share Document