Optimization of Structure and Magnetic Properties of NdFeBTi Nanocomposite Magnets

2012 ◽  
Vol 186 ◽  
pp. 206-211
Author(s):  
Daniela Derewnicka ◽  
Piotr Dłużewski ◽  
Marzena Spyra ◽  
Hanna Krztoń

This study investigated alloys with the composition Nd9Fe77B14 and Nd9Fe73Ti4B14 (at.%). Materials were melt spun in the form of a partially amorphous ribbon, which was subsequently annealed at 953K in order to obtain the optimum magnetic properties. The highest properties were obtained for annealing lasting 20 minutes (JHC = 913kA/m, Jr = 0,84T, BHmax = 107kJ/m3). Annealing at 953K results in simultaneous crystallisation in the whole mass of the alloy. The growth of grains is controlled by the duration of the annealing process. The objective of this work was to study the mechanisms of crystallisation and the reasons for a finer structure resulting from the presence of titanium. The phase composition was evaluated by X-ray diffraction. The microstructure was studied using a high-resolution transmission electron microscope. Detailed analysis of titanium distribution in the grains and in the grain boundaries was examined by x-ray spectrometry.

2010 ◽  
Vol 177 ◽  
pp. 32-36 ◽  
Author(s):  
An Rong Wang ◽  
Jian Li ◽  
Qing Mei Zhang ◽  
Hua Miao

Weak magnetic ZnFe2O4 nanoparticles were prepared by coprecipitation and treated with different concentrations of Fe(NO3)3 solution. Untreated and treated particles were studied using a vibrating sample magnetometer, transmission electron microscope, by X-ray diffraction, X-ray energy dispersive spectroscopy and X photoelectron spectroscopy. The results showed that, after treatment, the ZnFe2O4/γ-Fe2O3 forms disphase nanoparticles, with enlarged size, enhanced magnetic properties and with a surface parceled with Fe(NO3)3. The size of the particles and their magnetic properties are related to the concentration of the treatment solution. The particle size and magnetic properties could be controlled by controlling the concentration of treating solution, therefore nanoparticles can be more widely used.


2012 ◽  
Vol 05 ◽  
pp. 841-846
Author(s):  
AMIR KEYVANARA ◽  
REZA GHOLAMIPOUR ◽  
SHAMSEDIN MIRDAMADI ◽  
FARZAD SHAHRI ◽  
HOSSEIN SEPEHRI AMIN

Melt spun ribbons of Co 64 Fe 4 Ni 2 B 19 Si 8 Cr 3 alloy have been prepared and the nanocrystallization process was carried out by the heat treatment of the as spun ribbons above the crystallization temperature. Structural studies of the samples have been performed by transmission electron microscopy and X-ray diffraction. Magnetic properties of the samples and magnetoimpedance measurements were investigated and it was revealed that magnetic properties and magnetoimpedance of the samples deteriorate by the formation of nanocrystalline phases.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Nguyen Thi Thuy ◽  
Dang Le Minh

Nanosized LaFeO3material was prepared by 3 methods: high energy milling, citrate gel, and coprecipitation. The X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) show that the orthorhombic LaFeO3phase was well formed at a low sintering temperature of 500°C in the citrate-gel and co-precipitation methods. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations indicate that the particle size of the LaFeO3powder varies from 10 nm to 50 nm depending on the preparation method. The magnetic properties through magnetization versus temperatureM(T)and magnetization verses magnetic fieldM(H)characteristics show that the nano-LaFeO3exhibits a weak ferromagnetic behavior in the room temperature, and theM(H)curves are well fitted by Langevin functions.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Weiwei Yang ◽  
Leichen Guo ◽  
Zhimeng Guo ◽  
Guangle Dong ◽  
Yanli Sui ◽  
...  

Nd12.3−xDyxFe81.7Zr0.8Nb0.8Cu0.4B6.0  (x=0–2.5)ribbons have been prepared by melt-spun at 30 m/s and subsequent annealing. The influence of addition of Dy on the crystallization behavior, magnetic properties, and microstructure were investigated. Differential scanning calorimeter (DSC) and X-ray diffraction (XRD) revealed a single-phase material. Microstructure studies using transmission electron microscopy (TEM) had shown a significant microstructure refinement with Dy addition. Wohlfarth’s analysis showed that the exchange coupling interactions increased first with Dy contentxincreasing, reached the maximum value atx=0.5, and then slightly decreased withxfurther increasing. Optimal magnetic properties withJr=1.09 T,Hci=1048 kA/m, andBHmax=169.5 kJ/m3are achieved by annealing the melt-spun ribbons withx=0.5at% at 700°C for 10 min.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 222 ◽  
Author(s):  
Yvonna Jiraskova ◽  
Jiri Bursik ◽  
Pavel Janos ◽  
Jiri Lunacek ◽  
Artur Chrobak ◽  
...  

CeO2 samples prepared by three technological procedures from the same cerium source, namely cerium (III) nitrate hexahydrate, are studied from the viewpoint of structure, chemical and phase composition, and micro- and macro-magnetic properties. The scanning and transmission electron microscopies completed by energy-dispersive X-ray (EDX) analysis yield nano-structural natures and homogenous chemical compositions of the ceria samples, confirmed also by X-ray diffraction. The diamagnetic, paramagnetic, and ferromagnetic phases in all samples follow from an analysis of the room- and low-temperature measurements of hysteresis loops. Iron impurities in ppm amounts are clearly detected by 57Fe Mössbauer spectrometry not only in the ceria samples but also in the selected input chemicals used for their preparation. This contributes to the explanation of the magnetic behaviour of nanosized ceria.


2021 ◽  
Author(s):  
Yan Chen ◽  
Yuemei Lan ◽  
Dong Wang ◽  
Guoxing Zhang ◽  
Wenlong Peng ◽  
...  

A series of Gd2-xMoO6:xEu3+(x=0.18-0.38) nanophosphors were synthesized by the solvothermal method. The properties of this nanophosphor were characterized by x-ray diffraction (XRD), transmission electron microscope (TEM), fluorescence spectra and diffuse...


2011 ◽  
Vol 80-81 ◽  
pp. 217-220 ◽  
Author(s):  
Xue Qing Yue ◽  
Hai Jun Fu ◽  
Da Jun Li

Graphite encapsulated nickel nanoparticles were prepared by ball milling andsubsequently annealing a mixture of expanded graphite with nickel powders. The products were characterized by transmission electron microscope and X-ray diffraction. The formation mechanism of the products was discussed. Results show that the products have a size range of 20-150 nm. The graphite and nickel in the products all exhibit a high crystallinity.


2010 ◽  
Vol 654-656 ◽  
pp. 1106-1109
Author(s):  
Ya Qiong He ◽  
Chang Hui Mao ◽  
Jian Yang

Nanocrystalline Fe-Co alloy powders, which were prepared by high-energy mechanical milling, were nitrided under the mixing gas of NH3/H2 in the temperature range from 380°C to 510°C. X-ray diffraction (XRD) was used to analyze the grain size and reaction during the processing. The magnetic properties of the nitrided powders were measured by Vibrating Sample Magnetometer (VSM). The results show that with the appearance of Fe4N phase after nitride treatment, and the grain-size of FeCo phase decreases with the increase of nitridation temperature between 380°C to 450°C.The saturation magnetization of nitrided alloy powder treated at 480°C is about 18% higher than that of the initial Fe-Co alloy powder, accompanied by the reduction of the coercivity. Transmission electron microscope (TEM) was used, attempting to further analyze the effect of Fe4N phase on microstructure and magnetic properties of the powder mixtures.


2011 ◽  
Vol 236-238 ◽  
pp. 1712-1716 ◽  
Author(s):  
Hai Tao Liu ◽  
Jun Dai ◽  
Jia Jia Zhang ◽  
Wei Dong Xiang

Bismuth selenide (Bi2Se3) hexagonal nanosheet crystals with uniform size were successfully prepared via a solvothermal method at 160°C for 22 h using bismuth trichloride(BiCl3) and selenium powder(Se) as raw materials, sodium bisulfite(NaHSO3) as a reducing agent, diethylene glycol(DEG) as solvent, and ammonia as pH regulator. Various techniques such as X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), and selected area electron diffraction (SAED) were used to characterize the obtained products. Results show that the as-synthesized samples are pure Bi2Se3 hexagonal nanosheet crystals. A possible growth mechanism for Bi2Se3 hexagonal nanosheet crystals is also discussed based on the experiment.


2011 ◽  
Vol 311-313 ◽  
pp. 1713-1716 ◽  
Author(s):  
Yan Rong Sun ◽  
Tao Fan ◽  
Chang An Wang ◽  
Li Guo Ma ◽  
Feng Liu

Nano-hydroxyapatite with different morphology was synthesized by the co-precipitation method coupled with biomineralization using Ca(NO3)2•4H2O and (NH4)2HPO4 as reagents, adding chondroitin sulfate, agarose and aspartic acid as template. The structure and morphology of the prepared powders were characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM).


Sign in / Sign up

Export Citation Format

Share Document