scholarly journals Activation Volume and Energy for Dislocation Nucleation in Multi-Principal Element Alloys

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 263 ◽  
Author(s):  
Sanghita Mridha ◽  
Maryam Sadeghilaridjani ◽  
Sundeep Mukherjee

Incipient plasticity in multi-principal element alloys, CoCrNi, CoCrFeMnNi, and Al0.1CoCrFeNi was evaluated by nano-indentation and compared with pure Ni. The tests were performed at a loading rate of 70 μN/s in the temperature range of 298 K to 473 K. The activation energy and activation volume were determined using a statistical approach of analyzing the “pop-in” load marking incipient plasticity. The CoCrFeMnNi and Al0.1CoCrFeNi multi-principal element alloys showed two times higher activation volume and energy compared to CoCrNi and pure Ni, suggesting complex cooperative motion of atoms for deformation in the five component systems. The small calculated values of activation energy and activation volume indicate heterogeneous dislocation nucleation at point defects like vacancy and hot-spot.

2004 ◽  
Vol 19 (7) ◽  
pp. 2152-2158 ◽  
Author(s):  
Christopher A. Schuh ◽  
Alan C. Lund

We propose a nucleation theory-based analysis for incipient plasticity during nanoindentation and predict the statistical distribution of rate-dependent pop-in events for many nominally identical indentations on the same surface. In the framework of stress-assisted, thermally activated defect nucleation, we quantitatively rationalize new nanoindentation measurements on 4H SiC and extract the activation volume of the nucleation events that mark the onset of plastic flow. We also illustrate how this statistical approach can differentiate between unique nucleation events for different indenter tip geometries.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2799 ◽  
Author(s):  
Yi Ma ◽  
Xianwei Huang ◽  
Yuxuan Song ◽  
Wei Hang ◽  
Julong Yuan ◽  
...  

Relying on nanoindentation technology, we investigated the elastic-to-plastic transition via first pop-in event and estimated the corresponding shear stress for incipient plasticity, i.e., yielding in the three typical orientations, i.e., X-112°, Y-36°, and Y-42° planes. The occurrence of incipient plasticity exhibited a stochastic distribution in a wide range for the three orientations. Accordingly, the obtained values of yield stress were uniform and scattered in the range from about 4 to 7 GPa for LiTaO3 single crystal. The orientation effect on yield stress at the nano-scale was revealed to be insignificant in LiTaO3 single crystal. The yield stresses were 5.44 ± 0.41, 5.74 ± 0.59, and 5.34 ± 0.525 GPa for the X-112°, Y-36°, and Y-42° planes, respectively. The activation volumes of dislocation nucleation were computed based on the cumulative distribution of yield stress, which were 12 Å3, 8 Å3, and 9 Å3 for the X-112°, Y-36°, and Y-42° planes. The results indicated that point-like defects could be the source of plastic initiation on the surface of LiTaO3 single crystal.


2021 ◽  
Vol 7 (8) ◽  
pp. eabc6714 ◽  
Author(s):  
Kolan Madhav Reddy ◽  
Dezhou Guo ◽  
Shuangxi Song ◽  
Chun Cheng ◽  
Jiuhui Han ◽  
...  

The failure of superhard materials is often associated with stress-induced amorphization. However, the underlying mechanisms of the structural evolution remain largely unknown. Here, we report the experimental measurements of the onset of shear amorphization in single-crystal boron carbide by nanoindentation and transmission electron microscopy. We verified that rate-dependent loading discontinuity, i.e., pop-in, in nanoindentation load-displacement curves results from the formation of nanosized amorphous bands via shear amorphization. Stochastic analysis of the pop-in events reveals an exceptionally small activation volume, slow nucleation rate, and lower activation energy of the shear amorphization, suggesting that the high-pressure structural transition is activated and initiated by dislocation nucleation. This dislocation-mediated amorphization has important implications in understanding the failure mechanisms of superhard materials at stresses far below their theoretical strengths.


2017 ◽  
Vol 19 (11) ◽  
pp. 1700182 ◽  
Author(s):  
Harpreet Singh Grewal ◽  
Ramachandran Murali Sanjiv ◽  
Harpreet Singh Arora ◽  
Ram Kumar ◽  
Aditya Ayyagari ◽  
...  

2021 ◽  
Author(s):  
Siddhant Agarwal ◽  
Nicola Tosi ◽  
Pan Kessel ◽  
Sebastiano Padovan ◽  
Doris Breuer ◽  
...  

<p>The thermal evolution of terrestrial planets depends strongly on several parameters and initial conditions that are poorly constrained. Often, direct or indirect observables from planetary missions such as elastic lithospheric thickness, crustal thickness and duration of volcanism are inverted to infer the unknown parameter values and initial conditions. The non-uniqueness and non-linearity of this inversion necessitates a probabilistic inversion framework. However, due to the expensive nature of forward dynamic simulations of thermal convection , Markov Chain Monte Carlo methods are rarely used. To address this shortcoming, some studies have recently shown the effectiveness of Mixture Density Networks (MDN) (Bishop 1995) in being able to approximate the posterior probability using only the dataset of simulations run prior to the inversion (Meier et al. 2007, de Wit et al. 2013, Käufl et al. 2016, Atkins et al. 2016).</p><p>Using MDNs, we systematically isolate the degree to which a parameter can be constrained using different “present-day” synthetic observables from 6130 simulations for a Mars-like planet. The dataset – generated using the mantle convection code GAIA (Hüttig et al. 2013)- is the same as that used by Agarwal et al. (2020) for a surrogate modelling study.</p><p>The loss function used to optimize the MDN (log-likelihood) provides a single robust quantity that can be used to measure how well a parameter can be constrained. We test different numbers and combinations of observables (heat flux at the surface and core-mantle boundary, radial contraction, melt produced, elastic lithospheric thickness, and duration of volcanism) to constrain the following parameters: reference viscosity, activation energy and activation volume of the diffusion creep rheology, an enrichment factor for radiogenic elements in the crust, and initial mantle temperature. If all observables are available, reference viscosity can be constrained to within 32% of its entire range (10<sup>19</sup>−10<sup>22</sup> Pa s), crustal enrichment factor (1−50) to within 15%, activation energy (10<sup>5</sup>−5×10<sup>5</sup> J mol-1 ) to within 80%, and initial mantle temperature (1600−1800K) to within 39%. The additional availability of the full present-day temperature profile or parts of it as an observable tightens the constraints further. The activation volume (4×10<sup>-6</sup> −10×10<sup>-6</sup>  m<sup>3</sup> mol<sup>-1</sup>) cannot be constrained and requires research into new observables in space and time, as well as fields other than just temperature. Testing different levels of uncertainty (simulated using Gaussian noise) in the observables, we found that constraints on different parameters loosen at different rates, with initial temperature being the most sensitive. Finally, we present how the marginal MDN proposed by Bishop (1995) can be modified to model the joint probability for all parameters, so that  the inter-parameter correlations and the associated degeneracy can be capture, thereby providing a more comprehensive picture of all the evolution scenarios that fit given observational constraints.</p>


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1683 ◽  
Author(s):  
Yi Ma ◽  
Xianwei Huang ◽  
Yuxuan Song ◽  
Wei Hang ◽  
Taihua Zhang

The crystal orientation effect on mechanical heterogeneity of LiTaO3 single crystals is well known, whilst the time-dependent plastic behavior, i.e., creep is still short of understanding. Relying on nanoindentation technology, we systematically studied room-temperature creep flows at various holding depths (100 nm to 1100 nm) in three typical orientations namely the X-112°, Y-36° and Y-42° planes. Creep resistance was much stronger in the X-112° plane than the others. In the meanwhile, creep features were similar in the Y-36° and Y-42° planes. The orientation effect on creep deformation was consistent with that on hardness. The nanoindentation length scale played an important role in creep deformation that creep strains were gradually decreased with the holding depth in all the planes. Based on strain rate sensitivity and yield stress, the activation volumes of dislocation nucleation were computed at various nanoindentation depths. The activation volumes ranged from 5 Å3 to 23 Å3 for the Y-36° and Y-42° planes, indicating that a point-like defect could be the source of plastic initiation. In the X-112° plane, the activation volume was between 6 Å3 and 83 Å3. Cooperative migration of several atoms could also be the mechanism of dislocation activation at deep nanoindentation.


Sign in / Sign up

Export Citation Format

Share Document