scholarly journals Arc-Assisted Laser Welding Brazing of Aluminum to Steel

Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 397 ◽  
Author(s):  
Xiaoquan Yu ◽  
Ding Fan ◽  
Jiankang Huang ◽  
Chunling Li ◽  
Yutao Kang

Using laser beam as main heat source, and trailing arc as an assisted role, aluminum alloy was joined to galvanized steel in a butt configuration. Under suitable welding parameters, a sound welding seam was obtained. The interface intermetallic compounds layer and wetting behavior of weld joint were studied. The assisted arc can improve the wetting and spreading ability of weld pool duo to large temperature field. There are two different types of IMCs: near to the steel side one is Fe2Al5 with tooth-like shape and near to the weld seam side is the other one Fe4Al13 with flocculent-like shape. The highest tensile strength can reach 163 MPa when the fracture occurred at the weld seam.

2020 ◽  
Vol 863 ◽  
pp. 85-95
Author(s):  
Truong Minh Nhat ◽  
Truong Quoc Thanh ◽  
Tu Vinh Thong ◽  
Tran Trong Quyet ◽  
Luu Phuong Minh

This study presents conducted heat simulations and experimental jointing flat-plate of aluminum alloy 6061 and SUS 304. Temperature is simulated by the COMSOL software in three states: (1) Preheat the Friction Stir Welding (FSW) by TIG welding, (2) Thermal contact resistance between Aluminium and steel, and (3) The welding process using stiring friction is simulated. The simulations intended to predicting the temperature which is used for preheat and welding process to ensuring the required solid-state welding. The temperature is also determined and checked by a thermal imager comparing with simulation results. Besides, the results of tensile strength is carried out. The Box - Behnken method is used to identify the relationship between the welding parameters (rotation, speed and offset), temperature and tensile strength. The maximum tensile strength is 77% compared to the strength of aluminum alloy. The optimal set of parameters for the process is n = 676 rpm, v = 46 mm / min and x = 0.6 mm. The optimizing welding parameters to achieving good quality of welding process are described. SEM images to determine some properties of welding materials. This is also the basis for initial research to identify some defects in welding of two different materials (IMC thickness and interconnected pores) and the cause of these defects.


2011 ◽  
Vol 211-212 ◽  
pp. 1110-1114
Author(s):  
Xiao Yun Zhang ◽  
Yan Song Zhang

The wide use of galvanized steel in automobile manufacturing brings much challenge to the roof to body-side laser welding process. Fillet joint is an effective way to solve this problem such as pore in laser welding process. However, there is little research on this type of complicated joint process. Focused on this problem, take metallographic size of weld seam as the weld quality criteria, response surface methodology (RSM) is used to study the influence of laser welding parameters on weld seam quality. Finally, the optimum welding parameters are concluded to give technical instructions for the plant production.


2004 ◽  
Vol 449-452 ◽  
pp. 437-440 ◽  
Author(s):  
Takeshi Shinoda ◽  
Shiniti Kawata

Many researches for friction welding of aluminum with either carbon steel or stainless steel have been carried out. From those results, it is concluded that the greatest problem is the formation of brittle intermetallic compounds at weld interface. However, it is not clearly demonstrated the effect of friction welding parameters on the formation of intermetallic compounds. This research purposes are to evaluate the formation of intermetallic compounds and to investigate the effect of friction welding parameters on the strength of welded joint. For these purposes, A6061 aluminum alloy and S45C carbon steel were used with a continuous drive vertical friction welding machine. Tensile test results revealed that the maximum tensile strength was achieved at extremely short friction time and high upset. The joint strength reached 92% of the tensile strength of A6061 base metal. Tensile strength of friction welding was increasing with increasing upset pressure when friction time 1sec. However, tensile properties were deteriorated with increasing friction time. It was observed that the amount of formed intermetallic compound was increasing with increasing friction time at weld interface. Partly formed intermetallic compound on weld interface were identified when friction time 1sec. However, intermetallic compound layer were severely developed with longer friction time at weld interface. It was concluded that intermetallic compound layer deteriorated the tensile properties of weld joints.


2019 ◽  
Vol 43 (2) ◽  
pp. 230-236
Author(s):  
Ashok S. Kannusamy ◽  
Ravindran Ramasamy

This paper addresses the effect of post weld heat treatment methods on the mechanical and corrosion characteristics of friction stir welded aluminum alloy AA2014-T6. Aluminum alloy AA2014 is mainly used in applications that demand high strength to weight ratios, such as aerospace, marine, and industrial applications. In this work, AA2014-T6 plates of 6 mm thick were butt welded using a tool with a square profile. Tensile strength, hardness, and corrosion characteristics were compared between the samples as welded and post weld heat treated. Welded samples that were heat treated for a shorter ageing period (8 h) showed improved tensile strength irrespective of welding process parameters, compared to as-welded samples. The samples heat treated for a longer ageing period (9 h) showed a decline in tensile strength for low tool rotation speed. Hardness increased in welded samples heat treated for 8 h. Welded samples heat treated for 9 h show high passivity in corrosion media.


1998 ◽  
Vol 120 (1) ◽  
pp. 39-47 ◽  
Author(s):  
A. Akhtar ◽  
J. Lanteigne

Tension-torsion measurements were made with applied strain on ACSR, AACSR,ACAR, aluminum and aluminum alloy conductors, as well as on groundwires. Results were compared with predictions of a model based on mechanical properties of constituent wires and the geometry of the multistrand cable. True tensile strength of each cable was predicted accurately. Deviations were found in the torque values of cables containing galvanized steel strands. Interstrand friction, not considered in the model, is thought to be responsible for the deviation. Frictionless interaction of strands was found to be a reasonable approximation for aluminum and aluminum alloy stands.


2020 ◽  
Vol 11 (1) ◽  
pp. 34-42
Author(s):  
F. Khalfallah ◽  
Z. Boumerzoug ◽  
S. Rajakumar ◽  
E. Raouache

AbstractThe objective of this work is to investigate the rotary friction welding of AA1100 aluminum alloy with mild steel, and to optimize the welding parameters of these dissimilar materials, such as friction pressure/time, forging pressure/time and rotational speed. The optimization of the welding parameters was deduced by applying Response Surface Methodology (RSM). An empirical relationship was also applied to predict the welding parameters. Tensile test and micro-hardness measurements were used to determine the mechanical properties of the welded joints. Some joints were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) in order to investigate the formation of intermetallic compound (IMC) layer at the weld interface. Experimentally, the tensile strength of the weld increases with increasing the forging pressure/time, while the low level of forging pressure/time allows the formation of an IMC layer which reduces the tensile strength of the weld.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1550
Author(s):  
Radosław Winiczenko ◽  
Andrzej Skibicki ◽  
Paweł Skoczylas

The friction rotary welding (FRW) of magnesium alloy to aluminum alloy was presented in a paper due to significant interest in the manufacturing industry. A genetic algorithm (GA) method for optimizing FRW process parameters of dissimilar light alloys was presented. After obtaining the welding parameters by GA method, it was possible to determine the best tensile strength of the friction joint. The obtained joints were subjected to tensile strength. The highest tensile strength TS = 178 MPa was found using a genetic algorithm for the following friction welding parameters: friction force FF = 16 kN, friction time FT = 4 s, and upsetting force UF = 44 kN. The optimized values were compared with the experimental results. The application of the genetic algorithm method allowed increasing the tensile strength joint from 88 to 180 MPa. The maximum tensile strength of the friction welded magnesium alloy-aluminum alloy joints was 73% of the base AZ31B metal. The relationship between welding parameters and strenght of welds was also demonstrated in this study.


Author(s):  
DongSheng Zhao ◽  
TianFei Zhang ◽  
LiangLiang Wu ◽  
LeLe Kong ◽  
YuJun Liu

Experiment of automatic gas tungsten arc welding of liquefied natural gas carrier Invar alloy with a thickness of .7 mm was completed, and the welding parameters were optimized, as well as microstructure and mechanical properties of the welded joint were measured and analyzed. The grain size of the area near the weld centerline was small, mainly cellular dendrites, and the grain size on both sides of the weld centerline increased gradually, mainly dendrites, whereas the grain size near fusion line was larger, and there were more columnar crystals. The heat-affected zone was composed of coarse austenite grains. Transgranular cracks were the main cracks in the welding seam. When welding current was 40 A, frequency was 120 Hz, and welding speed was 350 mm/min, tensile strength of the welded joint was 446.9 MPa, which 88.1% of the base metal’s tensile strength and 10.3% of the fracture elongation. The fracture surface of tensile specimens showed typical plastic fracture characteristics, with no obvious crack characteristics, and no eutectic liquid films were observed.


Sign in / Sign up

Export Citation Format

Share Document