scholarly journals Improvement in the Biological Properties of Titanium Surfaces with Low-Temperature Plasma

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 943
Author(s):  
Yu-Hwa Pan ◽  
Wan-Ling Yao ◽  
Jerry Chin Yi Lin ◽  
Eisner Salamanca ◽  
Pei-Yo Tsai ◽  
...  

Peri-implantitis has become a common complication, accompanied by soft tissue inflammation. Porphyromonas gingivalis infection is the major cause of inflammation and progressive bone loss in the jaws. The surface property of titanium implants is a key factor in the alteration of osseointegration and P. gingivalis adhesion. However, the interplay between P. gingivalis and the surface properties of implants, subjected to different treatments, is not well described. Therefore, we focused on the surface properties of titanium implants; titanium disks that were autoclaved alone were used as controls. Those that were autoclaved and then subjected to low-temperature plasma (LTP) at 85 W and 13.56 MHz and with 100 mTorr of argon gas at room temperature for 15 min formed the experimental group. LTP-treated disks had smoother surfaces than the control group disks. The physical properties, such as scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDX), and X-ray photoelectron spectroscopy (XPS), demonstrated the surface composition was changed after LTP treatment. Further, osteoblastic cell proliferation enhancement was observed in the LTP-treated titanium surfaces. The results also revealed relatively less P. gingivalis adhesion to the LTP-treated disks than on the control disks on spectrophotometry and SEM. These findings clarified that P. gingivalis adhesion is reduced in implants subjected to LTP treatment. Thus, LTP treatment of peri-implantitis with the settings used in the present study is an option that needs further investigation.

2020 ◽  
Vol 6 ◽  
pp. 40-55
Author(s):  
N.M. Ivanova ◽  
◽  
E.O. Filippova ◽  
A.N. Aleinik ◽  
V.F. Pichugin ◽  
...  

Effects of the low-temperature plasma exposure, γ-irradiation, and joint g-irradiation and plasma exposure on the structure and surface properties of thin films based on polylactic acid (PLA) have been investigated. Films were obtained by the method a solvent-casting. It has been shown that films based on polylactic acid have topographically different sides: a smoother inner side and embossed outer one. PLA films have properties close to those hydrophobic, with a contact angle in the range of 70°-73° regardless of the surface side and belong to a weakly polar materials. The combined effect of plasma and gamma radiation slightly changes the surface topography. The effect of low-temperature plasma on the surface of the films leads to a decrease in the contact angle by 13°-55° (9-11%) and an increase in surface energy due to the polar component. The results of in vivo experiments on rabbits are presented. Biomicroscopy, optical coherence tomography, morphological and electron microscopic examination of the cornea after implantation of initial and radiation and plasma treated films showed that implantation of the films in the anterior chamber is not accompanied by a pronounced inflammatory reaction and increased intraocular pressure, while maintaining the morphological structure of the cornea almost unchanged.


2020 ◽  
Vol 29 (4) ◽  
pp. 2612-2622
Author(s):  
Yamid E. Núñez de la Rosa ◽  
Oriana Palma Calabokis ◽  
Paulo César Borges ◽  
Vladimir Ballesteros Ballesteros

2016 ◽  
Vol 7 (5) ◽  
pp. 664-672 ◽  
Author(s):  
E. O. Filippova ◽  
D. A. Karpov ◽  
A. V. Gradoboev ◽  
V. V. Sokhoreva ◽  
V. F. Pichugin

Author(s):  
Shuya ASADA ◽  
Akihisa OGINO

Abstract The aim of this study is to form the sulfur defects on monolayer molybdenum disulfide (MoS2) by low temperature microwave plasma treatment suppressing disturbance of molecular structure. CVD-grown and plasma treated multilayer MoS2 surface were analyzed to investigate the effects of H2 and Ar plasma treatment on sulfur defects and molecular structure. It was found that the disturbance of molecular structure was suppressed in the H2 plasma treatment compared to the Ar plasma treatment. Varying the incident ratio of hydrogen ions H+ and radicals H*, the influences of H2 plasma treatment with high and low H*/H+ ratio on monolayer MoS2 structure were discussed. As a result of X-ray photoelectron spectroscopy, Raman spectroscopy and photoluminescence analysis, sulfur defects increased with the increase in total amount of radical incident on MoS2. In addition, it is speculated that the etching with radical contributed to form sulfur defects suppressing the disturbance of molecular structure.


2012 ◽  
Vol 557-559 ◽  
pp. 1668-1671 ◽  
Author(s):  
Jian Zhong Yang ◽  
Meng Zhao

The performance of the polyphenylene sulfide fiber (PPS) was investigated by low temperature glow discharge plasma . The experimental results show that under the treatment of different plasma conditions, the PPS fiber surfaces appear the varying degree physics and chemical etching. It’s found that the friction coefficient and hydrophilicity of PPS fiber treated by low temperature plasma improve . X-ray photoelectron spectroscopy (XPS) analysis shows that the surface of PPS fiber produced etching, cross-linking, oxidation. Variations of tensile breaking strength of PPS with different parameters are analyzed.


2012 ◽  
Vol 204-208 ◽  
pp. 3930-3933
Author(s):  
Jin Li Du ◽  
Xin Hua Deng ◽  
Yuan Sun

In this paper, the crystallinity, tensile strength and hydrophility of polytetrafluoroethylene (PTFE) filled with 7wt.% Y2O3-ZrO2 (YSZ) were studied using X-ray diffraction (XRD), mechanical property testing and low-temperature plasma. The results show that the crystallinity gradually increases while tensile strength decreases with the stretch ratio going up; with YSZ content increasing, the tensile strength increases while the crystallinity decreases.


Sign in / Sign up

Export Citation Format

Share Document