scholarly journals Sustainable High-Speed Finishing Turning of Haynes 282 Using Carbide Tools in Dry Conditions

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 989 ◽  
Author(s):  
Antonio Díaz-Álvarez ◽  
José Díaz-Álvarez ◽  
José Luis Cantero ◽  
Henar Miguélez

Nickel-based superalloys exhibit an exceptional combination of corrosion resistance, enhanced mechanical properties at high temperatures, and thermal stability. The mechanical behavior of nickel-based superalloys depends on the grain size and the precipitation state after aging. Haynes 282 was developed in order to improve the creep behavior, formability, and strain-age cracking of the other commonly used nickel-based superalloys. Nevertheless, taking into account the interest of the industry in the machinability of Haynes 282 because of its great mechanical properties, which is not found in other superalloys like Inconel 718 or Waspaloy, more research on this alloy is necessary. Cutting tools suffer extreme thermomechanical loading because of the high pressure and temperature localized in the cutting zone. The consequence is material adhesion during machining and strong abrasion due to the hard carbides included in the material. The main recommendations for finishing turning in Haynes 282 include the use of carbide tools, low cutting speeds, low depth of pass, and the use of cutting fluids. However, because of the growing interest in sustainable processes and cost reduction, dry machining is considered to be one of the best techniques for material removal. During the machining of Haynes 282, at both the finishing and roughing turning, cemented carbide inserts are most commonly used and are recommended all over the industry. This paper deals with the machining of Haynes 282 by means of coated carbide tools cutting fluids (dry condition). Different cutting speeds and feeds were tested to quantify the cutting forces, quality of surface, wear progression, and end of tool life. Tool life values similar to those obtained with a lubricant under similar conditions in other studies have been obtained for the most favorable conditions in dry environments.

2009 ◽  
Vol 626-627 ◽  
pp. 189-194
Author(s):  
P. Liu ◽  
Jiu Hua Xu ◽  
Yu Can Fu

TA15 (Ti-6.5Al-2Zr-1Mo-1V) is a close alpha titanium alloy strengthened by solid solution with Al and other component. A series of experiments were carried out on normal and high speed milling of TA15. The recommended tools for many years had been the uncoated tungsten carbide grade K. In this work, the tool life of coated carbide tools used in high speed milling of forging and cast titanium alloy was studied. Additionally, the wear mechanism of cutting tools was also discussed. Finally, surface integrity, including surface roughness, metallograph and work hardening, were examined and analyzed. The result shows that the surface quality of forging and cast machined by carbide cutter is similar, but the tool life of carbide in high speed milling of forging TA15 is longer than that in high speed milling of cast TA15.


2014 ◽  
Vol 660 ◽  
pp. 18-22
Author(s):  
Mohamed Handawi ◽  
Amad Elddein Issa Elshwain ◽  
Mohd Yusof Noordin ◽  
Norizah Redzuan ◽  
Denni Kurniawan

Minimum quantity lubrication (MQL) or as it’s called semi dry cutting is a technique which spray a small value of lubricant flow rate to the cutting zone area. MQL has been used in many machining process with different cutting tools and workpiece materials due to its green environments and economically advantageous. MQL has become an attractive option to dry and flood cutting in terms of reduce the temperature in the cutting zone and reduce the cost of the product. However, in MQL seems to be machining limited by cutting temperature, because at high speed the effect of oil mist becomes evaporated. Therefore another alternative cooling approach was used with oil mist in this research. This research presents study the performance of nitrogen gas as a coolant and oil mist as lubricant in turning of hardened stainless tool steel (STAVAX ESR) with hardness 48 HRC. Using a gas as coolant with oil mist is a new solution for enhancing machinability. Turning experiments are carried out on CNC turning machine. The cutting insert grade is KC5010 (PVD-TiAlN wiper coated carbide). The experimental results were: 1) nitrogen gas with oil mist prolongs tool life compare with air with oil mist. 2) better product surface finish by using nitrogen gas with oil mist.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2799
Author(s):  
Mohammad Shariful Islam Chowdhury ◽  
Bipasha Bose ◽  
German Fox-Rabinovich ◽  
Stephen Clarence Veldhuis

The machining of Ti6Al4V alloy, especially at low cutting speeds, is associated with strong Built-Up Edge (BUE) formation. The PVD coatings applied on cutting tools to machine such materials must have the necessary combination of properties to address such an underlying wear mechanism. The present work investigates and shows that TiB2 PVD coating can be designed to have certain mechanical properties and tribological characteristics that improve machining in cases where BUE formation is observed. Three TiB2 coatings were studied: one low hardness coating and two high hardness coatings with varied coating thicknesses. Wear performances for the various TiB2 coated carbide tools were evaluated while rough turning Ti6Al4V. Tool wear characteristics were evaluated using tool life studies and the 3D wear volume measurements of the worn surface. Chip morphology analyses were done to assess the in-situ tribological performance of the coatings. The micro-mechanical properties of the coatings were also studied in detail to co-relate with the coatings’ performances. The results obtained show that during the rough turning of Ti6Al4V alloy with intensive BUE formation, the harder TiB2 coatings performed worse, with coating delamination on the rake surface under operation, whereas the softer version of the coating exhibited significantly better tool life without significant coating failure.


2009 ◽  
Vol 83-86 ◽  
pp. 985-992 ◽  
Author(s):  
B.T. Hang Tuah Baharudin ◽  
Shamsuddin Sulaiman ◽  
Mohd Khairol A. Arifin ◽  
A.A. Faieza ◽  
S.M. Sapuan

The development and application of Titanium Aluminium Nitrate (TiAlN) coatings for cutting tools has led to dramatic tool life extension and the realisation of high speed machining for hardened materials. This results in longer tool life and makes it possible to employ higher cutting speeds and feed rates. In this study, a series of different TiAlN based coatings on micro grains solid carbides were tested on H13 Tool Steel. These advanced coatings are commercially available by coating manufacturer which are trade marks of Balzers UK. The aim of this experiment was to investigate the performance of micro tools coated with these coatings and compare with uncoated tools. The results will be used to determine whether coatings for micro tools will have any impact on the performance of the tools such as reducing cutting forces or improving machining quality. This will be achieved by means of analysing the cutting force data and 3-D surface roughness respectively. Result obtained shows that different coating had different performance, hence can be applied to specifically targeted machining operation. The results also highlight some of the differences in wear mechanism of micro tools.


2015 ◽  
Vol 7 (6) ◽  
pp. 168781401559021 ◽  
Author(s):  
Pawel Twardowski ◽  
Stanislaw Legutko ◽  
Grzegorz M Krolczyk ◽  
Sergej Hloch

Alloy Digest ◽  
1978 ◽  
Vol 27 (12) ◽  

Abstract STORA ASP 60 is a molybdenum-tungsten high-speed steel with high percentages of carbon, cobalt and vanadium. It is a powder metallurgy steel, has high hardenability and can be hardened by cooling in air or oil from the austenitizing temperature. It has an excellent combination of wear resistance, toughness, hot hardness and resistance to tempering. It is recommended for cutting tools for hard-to-machine material and high cutting speeds. This datasheet provides information on composition, physical properties, microstructure, hardness, and elasticity. It also includes information on forming, heat treating, and machining. Filing Code: TS-342. Producer or source: Stora Kopparberg, Special Steels Division.


Alloy Digest ◽  
1978 ◽  
Vol 27 (9) ◽  

Abstract STORA ASP 30 is a high hardenability tungsten-molybdenum alloyed high-speed steel with high cobalt content. It is recommended for cutting tools for hard-to-machine material and high cutting speeds. It has excellent wear resistance, toughness, hot hardness and resistance to tempering. The excellent size stability and good grindability of ASP 30 make it very suitable for tools with a complicated shape. This datasheet provides information on composition, physical properties, microstructure, hardness, and elasticity. It also includes information on forming, heat treating, and machining. Filing Code: TS-338. Producer or source: Stora Kopparberg, Special Steels Division.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012015
Author(s):  
M Sh Migranov ◽  
A M Migranov ◽  
S R Shekhtman

Abstract The paper presents the results of a study of one of the ways to increase the wear resistance of “duplex” coatings applied to cutting tools, which are due to preliminary diffusion saturation of the tool surface with nitrogen (known as ion nitriding) followed by physical deposition of a hard coating (Ti, Cr) N. The proposed coating also contains an additional layer with an impurity of ions, deposited on a preliminary nitrided surface of high speed steel before the deposition of a hard coating. Tests were carried out to evaluate the effect of these modified layers on the tool life of the HSS tool. The greatest wear resistance after "triplex" - treatment was achieved during ion implantation of titanium into a pre-nitrided surface. The coefficient of friction of the modified layer was studied at different contact temperatures. Ionic mixing contributes to the appearance of a thin surface layer with an amorphous-like structure, which prolongs the stage of normal wear, which significantly increases the tool life as a result of the self-organization process.


Author(s):  
Mitsuru Hasegawa ◽  
Tatsuya Sugihara

Abstract In cutting of Ti-6Al-4V alloy, the cutting speed is limited since a high cutting temperature leads to severe tool wear and short tool life, resulting in poor production efficiency. On the other hand, some recent literature has reported that various beneficial effects can be provided by forming micro-textures on the tool surface in the metal cutting process. In this study, in order to achieve high-performance machining of Ti-6Al-4V, we first investigated the mechanism of the tool failure process for a cemented carbide cutting tool in high-speed turning of Ti-6Al-4V. Based on the results, cutting tools with micro textured surfaces were developed under the consideration of a cutting fluid action. A series of experiments showed that the textured rake face successfully decreases the cutting temperature, resulting in a significant suppression of both crater wear and flank wear. In addition, the temperature zone where the texture tool is effective in terms of the tool life in the Ti-6Al-4V cutting was discussed.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 447 ◽  
Author(s):  
Sergey Grigoriev ◽  
Alexey Vereschaka ◽  
Alexander Metel ◽  
Nikolay Sitnikov ◽  
Filipp Milovich ◽  
...  

This paper deals with the Cr-CrN-(Cr0.35Ti0.40Al0.25)N coating. It has a three-layered architecture with a nano-structured wear-resistant layer. The studies involved the investigation into the microstructure (with the use of SEM and TEM), elemental and phase composition (XRD and SAED patterns), wear process pattern in scratch testing, crystal structure, as well as the microhardness of the coating. Cutting tests of tools with the above coating were carried out in dry turning of steel 1045 at cutting speeds of vc = 200, 250, and 300 m·min−1. The comparison included uncoated tools and tools with the commercial TiN and (Ti,Al)N coatings with the same thickness. The tool with the Cr-CrN-(Cr0.35Ti0.40Al0.25)N coating showed the longest tool life at all the cutting speeds under consideration. Meanwhile, a tool with the coating under study can be recommended for use in turning constructional steel at the cutting speed of vc = 250 m·min−1. At this cutting speed, a tool shows the combination of a rather long tool life and balanced wear process, without any threat of catastrophic wear.


Sign in / Sign up

Export Citation Format

Share Document