scholarly journals Investigation of Biotransformation Products of p-Methoxymethylamphetamine and Dihydromephedrone in Wastewater by High-Resolution Mass Spectrometry

Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 66
Author(s):  
Juliet Kinyua ◽  
Aikaterini K. Psoma ◽  
Nikolaos I. Rousis ◽  
Maria-Christina Nika ◽  
Adrian Covaci ◽  
...  

There is a paucity of information on biotransformation and stability of new psychoactive substances (NPS) in wastewater. Moreover, the fate of NPS and their transformation products (TPs) in wastewater treatment plants is not well understood. In this study, batch reactors seeded with activated sludge were set up to evaluate biotic, abiotic, and sorption losses of p-methoxymethylamphetamine (PMMA) and dihydromephedrone (DHM) and identify TPs formed during these processes. Detection and identification of all compounds was performed with target and suspect screening approaches using liquid chromatography quadrupole-time-of-flight mass spectrometry. Influent and effluent 24 h composite wastewater samples were collected from Athens from 2014 to 2020. High elimination rates were found for PMMA (80%) and DHM (97%) after a seven-day experiment and degradation appeared to be related to biological activity in the active bioreactor. Ten TPs were identified and the main reactions were O- and N-demethylation, oxidation, and hydroxylation. Some TPs were reported for the first time and some were confirmed by reference standards. Identification of some TPs was enhanced by the use of an in-house retention time prediction model. Mephedrone and some of its previously reported human metabolites were formed from DHM incubation. Retrospective analysis showed that PMMA was the most frequently detected compound.

2021 ◽  
Vol 22 (8) ◽  
pp. 4000
Author(s):  
Emilia Marchei ◽  
Maria Alias Ferri ◽  
Marta Torrens ◽  
Magí Farré ◽  
Roberta Pacifici ◽  
...  

The use of the new psychoactive substances is continuously growing and the implementation of accurate and sensible analysis in biological matrices of users is relevant and fundamental for clinical and forensic purposes. Two different analytical technologies, high-sensitivity gas chromatography-mass spectrometry (GC-MS) and ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) were used for a screening analysis of classic drugs and new psychoactive substances and their metabolites in urine of formed heroin addicts under methadone maintenance therapy. Sample preparation involved a liquid-liquid extraction. The UHPLC-HRMS method included Accucore™ phenyl Hexyl (100 × 2.1 mm, 2.6 μm, Thermo, USA) column with a gradient mobile phase consisting of mobile phase A (ammonium formate 2 mM in water, 0.1% formic acid) and mobile phase B (ammonium formate 2 mM in methanol/acetonitrile 50:50 (v/v), 0.1% formic acid) and a full-scan data-dependent MS2 (ddMS2) mode for substances identification (mass range 100–1000 m/z). The GC-MS method employed an ultra-Inert Intuvo GC column (HP-5MS UI, 30 m, 250 µm i.d, film thickness 0.25 µm; Agilent Technologies, Santa Clara, CA, USA) and electron-impact (EI) mass spectra were recorded in total ion monitoring mode (scan range 40–550 m/z). Urine samples from 296 patients with a history of opioid use disorder were examined. Around 80 different psychoactive substances and/or metabolites were identified, being methadone and metabolites the most prevalent ones. The possibility to screen for a huge number of psychotropic substances can be useful in suspected drug related fatalities or acute intoxication/exposure occurring in emergency departments and drug addiction services.


2019 ◽  
Vol 38 (1) ◽  
pp. 269-276 ◽  
Author(s):  
Zhenhua Qian ◽  
Cuimei Liu ◽  
Jian Huang ◽  
Qingqing Deng ◽  
Zhendong Hua

Abstract Purpose This publication reports analytical properties of the designer benzodiazepine 8-chloro-6-(2-fluorophenyl)-1-methyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine (flualprazolam) seized in an anesthesia robbery case. Methods The target compound was identified by liquid chromatography–quadrupole time-of-flight-mass spectrometry (LC–QTOF-MS), gas chromatography–mass spectrometry (GC–MS), and nuclear magnetic resonance (NMR) spectroscopy. Results We could obtain detailed analytical data of flualprazolam—a new designer benzodiazepine available on the designer drug market. Conclusions More designer benzodiazepines have been detected and seized on the illegal drug scene as new psychoactive substances during the last 5 years. In this study, we presented analytical data of flualprazolam to assist forensic laboratories that encounter these newly emerging compounds in casework. This is the first report on this compound in illegal products.


2019 ◽  
Vol 40 (3) ◽  
pp. 135-146 ◽  
Author(s):  
Darren Allen ◽  
Brett McWhinney

The screening of biological samples for the presence of illicit or legal substances is an important frontline tool in both clinical and forensic toxicology. In the clinical setting, drug screening is a useful tool for the clinician in improving patient care and guiding treatment. Analytical approaches for the screening of drugs in biological samples are extensive and well documented, though many rapid screening techniques often lack appropriate sensitivity and specificity, requiring careful clinical interpretation. The continuous emergence of new psychoactive substances presents a considerable analytical challenge in maintaining up-to-date methods for the detection of relevant drugs. Adapting and validating methods for the detection of new substances can be a complicated and costly undertaking. There is also a considerable lag time between the emergence of new drugs and the release of commercial assays for detection. Quadrupole time-of-flight mass spectrometry (Q-TOF-MS) has gained considerable attention over the last decade as an analytical technique that is capable of meeting the challenges of a rapidly changing drug landscape. Exhibiting both high sensitivity and specificity in drug detection, Q-TOF-MS also allows methods to be rapidly updated for newly emerging psychoactive agents. The coupling of Q-TOF-MS with techniques such as liquid or gas chromatography can provide both rapid and comprehensive screening solutions that are gaining popularity in the clinical laboratory setting.


2009 ◽  
Vol 60 (10) ◽  
pp. 2485-2491 ◽  
Author(s):  
Y. Mokhayeri ◽  
R. Riffat ◽  
S. Murthy ◽  
W. Bailey ◽  
I. Takacs ◽  
...  

Facilities across North America are designing plants to meet stringent limit of technology (LOT) treatment for nitrogen removal. In the Mid-Atlantic region of the United States, this is in response to the Chesapeake Bay Agreement, which limit effluent total nitrogen discharges from wastewater treatment plants to between 3–5 mg/L. Since denitrification is crucial for the removal of nitrogen, maximizing this process step will result in a decrease in nutrient load to the receiving waters. Of particular interest is the use of an alternate external carbon source to replace the most commonly used carbon, methanol. Three external carbon sources were evaluated in this study including: methanol, ethanol and acetate at 13°C. The aim of this study was to evaluate the relative benefits and constraints for using these three carbon types. Laboratory scale Sequencing Batch Reactors (SBRs) were set up to grow and acclimate carbon free biomass to the specified substrate while in-situ Specific Denitrification Rates (SDNRs) were conducted concurrently. The results suggest that the SDNRs for acetate (31.0 ± 4.6 mgNO3-N/gVSS/hr) and ethanol (29.6 ± 5.6 mgNO3-N/gVSS/hr) are higher than that for methanol (10.1 ± 2.5 mgNO3-N/gVSS/hr). The yield coefficients in g COD/g COD were observed to follow a similar trend with values of 0.45 ± 0.05 for methanol, 0.53 ± 0.06 for ethanol and 0.66 ± 0.06 for acetate.


Sign in / Sign up

Export Citation Format

Share Document