scholarly journals HPTLC-Based Chemical Profiling: An Approach to Monitor Plant Metabolic Expansion Caused by Fungal Endophytes

Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 174
Author(s):  
Luis F. Salomé-Abarca ◽  
Cees A. M. J. J. van den Hondel ◽  
Özlem Erol ◽  
Peter G. L. Klinkhamer ◽  
Hye Kyong Kim ◽  
...  

Fungal endophytes isolated from two latex bearing species were chosen as models to show their potential to expand their host plant chemical diversity. Thirty-three strains were isolated from Alstonia scholaris (Apocynaceae) and Euphorbia myrsinites (Euphorbiaceae). High performance thin layer chromatography (HPTLC) was used to metabolically profile samples. The selected strains were well clustered in three major groups by hierarchical clustering analysis (HCA) of the HPTLC data, and the chemical profiles were strongly correlated with the strains’ colony size. This correlation was confirmed by orthogonal partial least squares (OPLS) modeling using colony size as “Y” variable. Based on the multivariate data analysis of the HPTLC data, the fastest growing strains of each cluster were selected and used for subsequent experiments: co-culturing to investigate interactions between endophytes-phytopathogens, and biotransformation of plant metabolites by endophytes. The strains exhibited a high capacity to fight against fungal pathogens. Moreover, there was an increase in the antifungal activity after being fed with host-plant metabolites. These results suggest that endophytes play a role in plant defense mechanisms either directly or by biotransformation/induction of metabolites. Regarding HPTLC-based metabolomics, it has proved to be a robust approach to monitor the interactions among fungal endophytes, the host plant and potential phytopathogens.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Carolina Santiago ◽  
Chris Fitchett ◽  
Murray H. G. Munro ◽  
Juriyati Jalil ◽  
Jacinta Santhanam

An endophytic fungus isolated from the plantCinnamomum mollissimumwas investigated for the bioactivity of its metabolites. The fungus, similar to aPhomasp., was cultured in potato dextrose broth for two weeks, followed by extraction with ethyl acetate. The crude extract obtained was fractionated by high-performance liquid chromatography. Both crude extract and fractions were assayed for cytotoxicity against P388 murine leukemic cells and inhibition of bacterial and fungal pathogens. The bioactive extract fraction was purified further and characterized by nuclear magnetic resonance, mass spectral and X-ray crystallography analysis. A polyketide compound, 5-hydroxyramulosin, was identified as the constituent of the bioactive fungal extract fraction. This compound inhibited the fungal pathogenAspergillus niger(IC501.56 μg/mL) and was cytotoxic against murine leukemia cells (IC502.10 μg/mL). 5-Hydroxyramulosin was the major compound produced by the endophytic fungus. This research suggests that fungal endophytes are a good source of bioactive metabolites which have potential applications in medicine.


2008 ◽  
Vol 59 (7) ◽  
Author(s):  
Corina Samoila ◽  
Alfa Xenia Lupea ◽  
Andrei Anghel ◽  
Marilena Motoc ◽  
Gabriela Otiman ◽  
...  

Denaturing High Performance Liquid Chromatography (DHPLC) is a relatively new method used for screening DNA sequences, characterized by high capacity to detect mutations/polymorphisms. This study is focused on the Transgenomic WAVETM DNA Fragment Analysis (based on DHPLC separation method) of a 485 bp fragment from human EC-SOD gene promoter in order to detect single nucleotide polymorphism (SNPs) associated with atherosclerosis and risk factors of cardiovascular disease. The fragment of interest was amplified by PCR reaction and analyzed by DHPLC in 100 healthy subjects and 70 patients characterized by atheroma. No different melting profiles were detected for the analyzed DNA samples. A combination of computational methods was used to predict putative transcription factors in the fragment of interest. Several putative transcription factors binding sites from the Ets-1 oncogene family: ETS member Elk-1, polyomavirus enhancer activator-3 (PEA3), protein C-Ets-1 (Ets-1), GABP: GA binding protein (GABP), Spi-1 and Spi-B/PU.1 related transcription factors, from the Krueppel-like family: Gut-enriched Krueppel-like factor (GKLF), Erythroid Krueppel-like factor (EKLF), Basic Krueppel-like factor (BKLF), GC box and myeloid zinc finger protein MZF-1 were identified in the evolutionary conserved regions. The bioinformatics results need to be investigated further in others studies by experimental approaches.


2013 ◽  
Vol 103 (6) ◽  
pp. 538-544 ◽  
Author(s):  
Glenna M. Malcolm ◽  
Gretchen A. Kuldau ◽  
Beth K. Gugino ◽  
María del Mar Jiménez-Gasco

Much of the current knowledge on population biology and ecology of soilborne fungal pathogens has been derived from research based on populations recovered from plants displaying disease symptoms or soil associated with symptomatic plants. Many soilborne fungal pathogens are known to cause disease on a large number of crop plants, including a variety of important agronomical, horticultural, ornamental, and forest plants species. For instance, the fungus Verticillium dahliae causes disease on >400 host plants. From a phytopathological perspective, plants on which disease symptoms have not been yet observed are considered to be nonhosts for V. dahliae. This term may be misleading because it does not provide information regarding the nature of the plant–fungus association; that is, a nonhost plant may harbor the fungus as an endophyte. Yet, there are numerous instances in the literature where V. dahliae has been isolated from asymptomatic plants; thus, these plants should be considered hosts. In this article, we synthesize scattered research that indicates that V. dahliae, aside from being a successful and significant vascular plant pathogen, may have a cryptic biology on numerous asymptomatic plants as an endophyte. Thus, we suggest here that these endophytic associations among V. dahliae and asymptomatic plants are not unusual relationships in nature. We propose to embrace the broader ecology of many fungi by differentiating between “symptomatic hosts” as those plants in which the infection and colonization by a fungus results in disease, and “asymptomatic hosts” as those plants that harbor the fungus endophytically and are different than true nonhosts that should be used for plant species that do not interact with the given fungus. In fact, if we broaden our definition of “host plant” to include asymptomatic plants that harbor the fungus as an endophyte, it is likely that the host ranges for some soilborne fungal pathogens are much larger than previously envisioned. By ignoring the potential for soilborne fungal pathogens to display endophytic relationships, we leave gaps in our knowledge about the population biology and ecology, persistence, and spread of these fungi in agroecosystems.


Author(s):  
Irshad Mohammad ◽  
Lucie Blondeau ◽  
Eddy Foy ◽  
Jocelyne Leroy ◽  
Eric Leroy ◽  
...  

Following the trends of alloys as negative electrodes for Na-ion batteries, the sodiation of the InSb intermetallic compound was investigated for the first time. The benefit of coupling Sb with...


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jinchao Tong ◽  
Fei Suo ◽  
Tianning Zhang ◽  
Zhiming Huang ◽  
Junhao Chu ◽  
...  

AbstractHigh-performance uncooled millimetre and terahertz wave detectors are required as a building block for a wide range of applications. The state-of-the-art technologies, however, are plagued by low sensitivity, narrow spectral bandwidth, and complicated architecture. Here, we report semiconductor surface plasmon enhanced high-performance broadband millimetre and terahertz wave detectors which are based on nanogroove InSb array epitaxially grown on GaAs substrate for room temperature operation. By making a nanogroove array in the grown InSb layer, strong millimetre and terahertz wave surface plasmon polaritons can be generated at the InSb–air interfaces, which results in significant improvement in detecting performance. A noise equivalent power (NEP) of 2.2 × 10−14 W Hz−1/2 or a detectivity (D*) of 2.7 × 1012 cm Hz1/2 W−1 at 1.75 mm (0.171 THz) is achieved at room temperature. By lowering the temperature to the thermoelectric cooling available 200 K, the corresponding NEP and D* of the nanogroove device can be improved to 3.8 × 10−15 W Hz−1/2 and 1.6 × 1013 cm Hz1/2 W−1, respectively. In addition, such a single device can perform broad spectral band detection from 0.9 mm (0.330 THz) to 9.4 mm (0.032 THz). Fast responses of 3.5 µs and 780 ns are achieved at room temperature and 200 K, respectively. Such high-performance millimetre and terahertz wave photodetectors are useful for wide applications such as high capacity communications, walk-through security, biological diagnosis, spectroscopy, and remote sensing. In addition, the integration of plasmonic semiconductor nanostructures paves a way for realizing high performance and multifunctional long-wavelength optoelectrical devices.


RSC Advances ◽  
2019 ◽  
Vol 9 (60) ◽  
pp. 35045-35049
Author(s):  
Xu Chen ◽  
Jian Zhou ◽  
Jiarui Li ◽  
Haiyan Luo ◽  
Lin Mei ◽  
...  

High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications.


2019 ◽  
Vol 32 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Chunyan Zhang ◽  
Mingfa Lv ◽  
Wenfang Yin ◽  
Tingyan Dong ◽  
Changqing Chang ◽  
...  

The plant pathogen Xanthomonas campestris pv. campestris produces diffusible signal factor (DSF) quorum sensing (QS) signals to regulate its biological functions and virulence. Our previous study showed that X. campestris pv. campestris utilizes host plant metabolites to enhance the biosynthesis of DSF family signals. However, it is unclear how X. campestris pv. campestris benefits from the metabolic products of the host plant. In this study, we observed that the host plant metabolites not only boosted the production of the DSF family signals but also modulated the expression levels of DSF-regulated genes in X. campestris pv. campestris. Infection with X. campestris pv. campestris induced changes in the expression of many sugar transporter genes in Arabidopsis thaliana. Exogenous addition of sucrose or glucose, which are the major products of photosynthesis in plants, enhanced DSF signal production and X. campestris pv. campestris pathogenicity in the Arabidopsis model. In addition, several sucrose hydrolase–encoding genes in X. campestris pv. campestris and sucrose invertase–encoding genes in the host plant were notably upregulated during the infection process. These enzymes hydrolyzed sucrose to glucose and fructose, and in trans expression of one of these enzymes, CINV1 of A. thaliana or XC_0805 of X. campestris pv. campestris, enhanced DSF signal biosynthesis in X. campestris pv. campestris in the presence of sucrose. Taken together, our findings demonstrate that X. campestris pv. campestris applies multiple strategies to utilize host plant sugars to enhance QS and pathogenicity.


2016 ◽  
Vol 4 (36) ◽  
pp. 13822-13829 ◽  
Author(s):  
Xiaowei Li ◽  
Sijian Li ◽  
Zhengxi Zhang ◽  
Jun Huang ◽  
Li Yang ◽  
...  

Hybrid ionogel electrolytes have high thermal and electrochemical stability, good ionic conductivity, and potential to suppress Li dendrite formation. Solid-state lithium metal batteries with hybrid electrolytes reveal high capacity and remarkable rate performance.


Sign in / Sign up

Export Citation Format

Share Document