scholarly journals Xanthomonas campestris Promotes Diffusible Signal Factor Biosynthesis and Pathogenicity by Utilizing Glucose and Sucrose from Host Plants

2019 ◽  
Vol 32 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Chunyan Zhang ◽  
Mingfa Lv ◽  
Wenfang Yin ◽  
Tingyan Dong ◽  
Changqing Chang ◽  
...  

The plant pathogen Xanthomonas campestris pv. campestris produces diffusible signal factor (DSF) quorum sensing (QS) signals to regulate its biological functions and virulence. Our previous study showed that X. campestris pv. campestris utilizes host plant metabolites to enhance the biosynthesis of DSF family signals. However, it is unclear how X. campestris pv. campestris benefits from the metabolic products of the host plant. In this study, we observed that the host plant metabolites not only boosted the production of the DSF family signals but also modulated the expression levels of DSF-regulated genes in X. campestris pv. campestris. Infection with X. campestris pv. campestris induced changes in the expression of many sugar transporter genes in Arabidopsis thaliana. Exogenous addition of sucrose or glucose, which are the major products of photosynthesis in plants, enhanced DSF signal production and X. campestris pv. campestris pathogenicity in the Arabidopsis model. In addition, several sucrose hydrolase–encoding genes in X. campestris pv. campestris and sucrose invertase–encoding genes in the host plant were notably upregulated during the infection process. These enzymes hydrolyzed sucrose to glucose and fructose, and in trans expression of one of these enzymes, CINV1 of A. thaliana or XC_0805 of X. campestris pv. campestris, enhanced DSF signal biosynthesis in X. campestris pv. campestris in the presence of sucrose. Taken together, our findings demonstrate that X. campestris pv. campestris applies multiple strategies to utilize host plant sugars to enhance QS and pathogenicity.

2015 ◽  
Vol 81 (8) ◽  
pp. 2861-2868 ◽  
Author(s):  
Yinyue Deng ◽  
Xiaoling Liu ◽  
Ji'en Wu ◽  
Jasmine Lee ◽  
Shaohua Chen ◽  
...  

ABSTRACTPlant pathogenXanthomonas campestrispv. campestris producescis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous addition of host plant juice or ethanol extract to the growth medium ofX. campestrispv. campestris could significantly boost DSF family signal production. It was subsequently revealed thatX. campestrispv. campestris produces not only DSF but also BDSF (cis-2-dodecenoic acid) and another novel DSF family signal, which was designated DSF-II. BDSF was originally identified inBurkholderia cenocepaciato be involved in regulation of motility, biofilm formation, and virulence inB. cenocepacia. Functional analysis suggested that DSF-II plays a role equal to that of DSF in regulation of biofilm dispersion and virulence factor production inX. campestrispv. campestris. Furthermore, chromatographic separation led to identification of glucose as a specific molecule stimulating DSF family signal biosynthesis inX. campestrispv. campestris.13C-labeling experiments demonstrated that glucose acts as a substrate to provide a carbon element for DSF biosynthesis. The results of this study indicate thatX. campestrispv. campestris could utilize a common metabolite of the host plant to enhance DSF family signal synthesis and therefore promote virulence.


2021 ◽  
Vol 22 (18) ◽  
pp. 9862
Author(s):  
Xudan Xu ◽  
Tian Ye ◽  
Wenping Zhang ◽  
Tian Zhou ◽  
Xiaofan Zhou ◽  
...  

Quorum sensing (QS) is a microbial cell–cell communication mechanism and plays an important role in bacterial infections. QS-mediated bacterial infections can be blocked through quorum quenching (QQ), which hampers signal accumulation, recognition, and communication. The pathogenicity of numerous bacteria, including Xanthomonas campestris pv. campestris (Xcc), is regulated by diffusible signal factor (DSF), a well-known fatty acid signaling molecule of QS. Cupriavidus pinatubonensis HN-2 could substantially attenuate the infection of XCC through QQ by degrading DSF. The QQ mechanism in strain HN-2, on the other hand, is yet to be known. To understand the molecular mechanism of QQ in strain HN-2, we used whole-genome sequencing and comparative genomics studies. We discovered that the fadT gene encodes acyl-CoA dehydrogenase as a novel QQ enzyme. The results of site-directed mutagenesis demonstrated the requirement of fadT gene for DSF degradation in strain HN-2. Purified FadT exhibited high enzymatic activity and outstanding stability over a broad pH and temperature range with maximal activity at pH 7.0 and 35 °C. No cofactors were required for FadT enzyme activity. The enzyme showed a strong ability to degrade DSF. Furthermore, the expression of fadT in Xcc results in a significant reduction in the pathogenicity in host plants, such as Chinese cabbage, radish, and pakchoi. Taken together, our results identified a novel DSF-degrading enzyme, FadT, in C. pinatubonensis HN-2, which suggests its potential use in the biological control of DSF-mediated pathogens.


Author(s):  
Mingfang Wang ◽  
Xia Li ◽  
Shihao Song ◽  
Chaoyu Cui ◽  
Lian-Hui Zhang ◽  
...  

It has been demonstrated that quorum sensing (QS) is widely employed by bacterial cells to coordinately regulate various group behaviors. Diffusible signal factor (DSF)-type signals have emerged as a growing family of conserved cell-cell communication signals. In addition to the DSF signal initially identified in Xanthomonas campestris pv. campestris, B urkholderia d iffusible s ignal f actor (BDSF, cis -2-dodecenoic acid) has been recognized as a conserved DSF-type signal with specific characteristics in both signal perception and transduction from DSF signals. Here, we review the history and current progress of the research of this type of signal, especially focusing on its biosynthesis, signaling pathways, and biological functions. We also discuss and explore the huge potential of targeting this kind of QS system as a new therapeutic strategy to control bacterial infections and diseases.


1996 ◽  
Vol 42 (6) ◽  
pp. 609-612 ◽  
Author(s):  
Bhagyashree Joshi ◽  
Jayant M. Khire ◽  
Hephzibah SivaRaman ◽  
M. Islam Khan

A lectin was isolated from culture filtrates of Xanthomonas campestris NCIM 5028, by a simple procedure of hydrophobic chromatography on phenyl-Sepharose after ammonium sulphate precipitation. The lectin was a heterodimer, with subunit molecular masses of 30 000 and 28 000. Gel filtration on S-300 column, calibrated with markers, showed its molecular mass to be approximately 70 000. Its isoelectric point was 7.2. The agglutination of the rabbit erythrocytes by the lectin was inhibited by fetuin glycopeptides and host plant (Brassica oleracea) extracts.Key words: Xanthomonas campestris, lectin, purification.


2006 ◽  
Vol 17 (8) ◽  
pp. 3557-3568 ◽  
Author(s):  
James C. Warren ◽  
Adam Rutkowski ◽  
Lynne Cassimeris

Adenovirus translocation to the nucleus occurs through a well characterized minus end-directed transport along microtubules. Here, we show that the adenovirus infection process has a significant impact on the stability and dynamic behavior of host cell microtubules. Adenovirus-infected cells had elevated levels of acetylated and detyrosinated microtubules compared with uninfected cells. The accumulation of modified microtubules within adenovirus-infected cells required active RhoA. Adenovirus-induced changes in microtubule dynamics were characterized at the centrosome and at the cell periphery in living cells. Adenovirus infection resulted in a transient enhancement of centrosomal microtubule nucleation frequency. At the periphery of adenovirus-infected cells, the dynamic instability of microtubules plus ends shifted toward net growth, compared with the nearly balanced growth and shortening observed in uninfected cells. In infected cells, microtubules spent more time in growth, less time in shortening, and underwent catastrophes less frequently compared with those in uninfected cells. Drug-induced inhibition of Rac1 prevented most of these virus-induced shifts in microtubule dynamic instability. These results demonstrate that adenovirus infection induces a significant stabilizing effect on host cell microtubule dynamics, which involve, but are not limited to, the activation of the RhoGTPases RhoA and Rac1.


2007 ◽  
Vol 189 (13) ◽  
pp. 4964-4968 ◽  
Author(s):  
Yvonne Fouhy ◽  
Karl Scanlon ◽  
Katherine Schouest ◽  
Charles Spillane ◽  
Lisa Crossman ◽  
...  

ABSTRACT The genome of Stenotrophomonas maltophilia encodes a cell-cell signaling system that is highly related to the diffusible signal factor (DSF)-dependent system of the phytopathogen Xanthomonas campestris. Here we show that in S. maltophilia, DSF signaling controls factors contributing to the virulence and antibiotic resistance of this important nosocomial pathogen.


2001 ◽  
Vol 14 (6) ◽  
pp. 768-774 ◽  
Author(s):  
Adrian A. Vojnov ◽  
Holly Slater ◽  
Michael J. Daniels ◽  
J. Maxwell Dow

The gum gene cluster of Xanthomonas campestris pv. campestris comprises 12 genes whose products are involved in the biosynthesis of the extracellular polysaccharide xanthan. These genes are expressed primarily as an operon from a promoter upstream of the first gene, gumB. Although the regulation of xanthan synthesis in vitro has been well studied, nothing is known of its regulation in planta. A reporter plasmid was constructed in which the promoter region of the gum operon was fused to gusA. In liquid cultures, the expression of the gumgusA reporter was correlated closely with the production of xanthan, although a low basal level of β-glucuronidase activity was seen in the absence of added carbon sources when xanthan production was very low. The expression of the gumgusA fusion also was subject to positive regulation by rpfF, which is responsible for the synthesis of the diffusible signal factor (DSF). The expression of the gumgusA fusion in bacteria recovered from inoculated turnip leaves was maximal at the later phases of growth and was subject to regulation by rpfF. These results provide indirect support for the operation of the DSF regulatory system in bacteria in planta.


Sign in / Sign up

Export Citation Format

Share Document