scholarly journals HILIC-Enabled 13C Metabolomics Strategies: Comparing Quantitative Precision and Spectral Accuracy of QTOF High- and QQQ Low-Resolution Mass Spectrometry

Metabolites ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 63 ◽  
Author(s):  
André Feith ◽  
Attila Teleki ◽  
Michaela Graf ◽  
Lorenzo Favilli ◽  
Ralf Takors

Dynamic 13C-tracer-based flux analyses of in vivo reaction networks still require a continuous development of advanced quantification methods applying state-of-the-art mass spectrometry platforms. Utilizing alkaline HILIC chromatography, we adapt strategies for a systematic quantification study in non- and 13C-labeled multicomponent endogenous Corynebacterium glutamicum extracts by LC-QTOF high resolution (HRMS) and LC-QQQ tandem mass spectrometry (MS/MS). Without prior derivatization, a representative cross-section of 17 central carbon and anabolic key intermediates were analyzed with high selectivity and sensitivity under optimized ESI-MS settings. In column detection limits for the absolute quantification range were between 6.8–304.7 (QQQ) and 28.7–881.5 fmol (QTOF) with comparable linearities (3–5 orders of magnitude) and enhanced precision using QQQ-MRM detection. Tailor-made preparations of uniformly (U)13C-labeled cultivation extracts for isotope dilution mass spectrometry enabled the accurate quantification in complex sample matrices and extended linearities without effect on method parameters. Furthermore, evaluation of metabolite-specific m+1-to-m+0 ratios (ISR1:0) in non-labeled extracts exhibited sufficient methodical spectral accuracies with mean deviations of 3.89 ± 3.54% (QTOF) and 4.01 ± 3.01% (QQQ). Based on the excellent HILIC performance, conformity analysis of time-resolved isotopic enrichments in 13C-tracer experiments revealed sufficient spectral accuracy for QQQ-SIM detection. However, only QTOF-HRMS ensures determination of the full isotopologue space in complex matrices without mass interferences.

2019 ◽  
Vol 15 (4) ◽  
pp. 312-318
Author(s):  
Shuoye Yang

Background: The therapeutic ability and application of antifungal peptide (APs) are limited by their physico-chemical and biological properties, the nano-liposomal encapsulation would improve the in vivo circulation and stability. </P><P> Objective: To develop a long-circulating liposomal delivery systems encapsulated APs-CGA-N12 with PEGylated lipids and cholesterol, and investigated through in vivo pharmacokinetics. Methods: The liposomes were prepared and characterized, a rapid and simple liquid chromatographytandem mass spectrometry (LC-MS/MS) assay was developed for the determination of antifungal peptide in vivo, the pharmacokinetic characteristics of APs liposomes were evaluated in rats. Results: Liposomes had a large, unilamellar structure, particle size and Zeta potential ranged from 160 to 185 nm and -0.55 to 1.1 mV, respectively. The results indicated that the plasma concentration of peptides in reference solutions rapidly declined after intravenous administration, whereas the liposomeencapsulated ones showed slower elimination. The AUC(0-∞) was increased by 3.0-fold in liposomes in comparison with standard solution (20 mg·kg-1), the half-life (T1/2) was 1.6- and 1.5-fold higher compared to the reference groups of 20 and 40 mg·kg-1, respectively. Conclusion: Therefore, it could be concluded that liposomal encapsulation effectively improved the bioavailability and pharmacokinetic property of antifungal peptides.


2021 ◽  
Vol 22 (12) ◽  
pp. 6283
Author(s):  
Jérémy Lamarche ◽  
Luisa Ronga ◽  
Joanna Szpunar ◽  
Ryszard Lobinski

Selenoprotein P (SELENOP) is an emerging marker of the nutritional status of selenium and of various diseases, however, its chemical characteristics still need to be investigated and methods for its accurate quantitation improved. SELENOP is unique among selenoproteins, as it contains multiple genetically encoded SeCys residues, whereas all the other characterized selenoproteins contain just one. SELENOP occurs in the form of multiple isoforms, truncated species and post-translationally modified variants which are relatively poorly characterized. The accurate quantification of SELENOP is contingent on the availability of specific primary standards and reference methods. Before recombinant SELENOP becomes available to be used as a primary standard, careful investigation of the characteristics of the SELENOP measured by electrospray MS and strict control of the recoveries at the various steps of the analytical procedures are strongly recommended. This review critically discusses the state-of-the-art of analytical approaches to the characterization and quantification of SELENOP. While immunoassays remain the standard for the determination of human and animal health status, because of their speed and simplicity, mass spectrometry techniques offer many attractive and complementary features that are highlighted and critically evaluated.


2013 ◽  
Vol 36 (6) ◽  
pp. 1054-1060
Author(s):  
Guiwan Koh ◽  
Ee-mei Gui ◽  
Tang-Lin Teo ◽  
Tong-Kooi Lee

Sign in / Sign up

Export Citation Format

Share Document