scholarly journals Process Fingerprint in Micro-EDM Drilling

Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 240 ◽  
Author(s):  
Mattia Bellotti ◽  
Jun Qian ◽  
Dominiek Reynaerts

The micro electrical discharge machining (micro-EDM) process is extensively used in aerospace, automotive, and biomedical industries for drilling small holes in difficult-to-machine materials. However, due to the complexity of the electrical discharge phenomena, optimization of the processing parameters and quality control are time-consuming operations. In order to shorten these operations, this study investigates the applicability of a process fingerprint approach in micro-EDM drilling. This approach is based on the monitoring of a few selected physical quantities, which can be controlled in-line to maximize the drilling speed and meet the manufacturing tolerance. A Design of Experiments (DoE) is used to investigate the sensitivity of four selected physical quantities to variations in the processing parameters. Pearson’s correlation is used to evaluate the correlation of these quantities to some main performance and hole quality characteristics. Based on the experimental results, the potential of the process fingerprint approach in micro-EDM drilling is discussed. The results of this research provide a foundation for future in-line process optimization and quality control techniques based on machine learning.

2012 ◽  
Vol 591-593 ◽  
pp. 391-395 ◽  
Author(s):  
Hao Tong ◽  
Yong Li ◽  
Long Zhang

To improve the spray effects of fuel-jet nozzles, the deep micro-holes of the nozzles require taper angle 0°-2° along jet direction. In this paper, a taper-swinging mechanism (TSM) is designed to swing a taper angle on an electrode wire for micro electrical discharge machining (EDM) of micro-taper holes. The features of TSM are as follows. First, the electrode wire and its guider are swung simultaneously during the micro-EDM drilling. Second, the center of a fixed sphere as the taper vertex is positioned on the surface of workpiece. Thirdly, non-rotating of the electrode wire and the fixed center avoid the errors of the swing motion. The taper holes with the corresponding angles of 0.12°, 0.40°, 0.83°, and 1.32° were machined by using TSM. The batch production showed that the consistency accuracy of holes’ diameters reached 4μm. In addition, the TSM was applied in a micro EDM machine tool.


2020 ◽  
Vol 13 (3) ◽  
pp. 219-229
Author(s):  
Baocheng Xie ◽  
Jianguo Liu ◽  
Yongqiu Chen

Background: Micro-Electrical Discharge Machining (EDM) milling is widely used in the processing of complex cavities and micro-three-dimensional structures, which is a more effective processing method for micro-precision parts. Thus, more attention has been paid on the micro-EDM milling. Objective : To meet the increasing requirement of machining quality and machining efficiency of micro- EDM milling, the processing devices and processing methods of micro-EDM milling are being improved continuously. Methods: This paper reviews various current representative patents related to the processing devices and processing methods of micro-EDM milling. Results: Through summarizing a large number of patents about processing devices and processing methods of micro-EDM milling, the main problems of current development, such as the strategy of electrode wear compensation and the development trends of processing devices and processing methods of micro-EDM milling are discussed. Conclusion: The optimization of processing devices and processing methods of micro-EDM milling are conducive to solving the problems of processing efficiency and quality. More relevant patents will be invented in the future.


2012 ◽  
Vol 472-475 ◽  
pp. 2401-2404 ◽  
Author(s):  
Guo Zheng Zhu ◽  
Ji Cheng Bai ◽  
Yong Feng Guo ◽  
Peng Ju Hou ◽  
Chao Jiang Li

As demands for the micro array holes in modern industry and the characteristics of micro Electrical Discharge Machining (micro EDM), a new type micro EDM machine tool used to machine micro array holes was designed and manufactured. The machine tool contains following systems: the mechanism system, the control system, the pulse generator system and other auxiliary systems. Each system was studied respectively. Base on a large number of experiments, finally, a sample with 256 array holes was processed by the machine tool. The diameter of single hole is 45µm and precision of the holes is ±1µm. The sample has been successfully applied to R & D test of micro nozzle components


2015 ◽  
Vol 651-653 ◽  
pp. 759-764
Author(s):  
Oliver Kröning ◽  
Mathias Herzig ◽  
Matthias Hackert-Oschätzchen ◽  
Ralf Kühn ◽  
Henning Zeidler ◽  
...  

Micro EDM (Electrical Discharge Machining) is a known nonconventional process for the machining of hard to cut materials. Due to its ablating nature based on melting and evaporation through heat induced by electrical discharges, it can function independently of the hardness, toughness or brittleness of the workpiece. Thus micro EDM is a possible process to fulfill the requirements of higher precision and high quality in carbide metal machining. Thereby the surface and the roughness of machined carbide metals depend on the discharge energy used. For machining carbide metals with high surface quality pulse generators with ultra-short discharges are required. This paper presents the development of a two-staged pulse generator with the ability to provide ultra-short pulses by using a two-staged pulse. The current and voltage signals of the discharges were recorded and their characteristics were analyzed.


2011 ◽  
Vol 411 ◽  
pp. 315-318 ◽  
Author(s):  
Lan Chen

In the field of micromachining, micro electrical discharge machining (MEDM) is an important and perfect machining method for high rigid or high wearable materials, which is better than traditional methods of machining. MEDM technology is used to manufacture on-line electrodes and then minimum micro shafts with diameter of 15μm were made with these electrodes. A series of different micro-holes (e.g. Φ40μm、Φ50μm、Φ60μm) on pieces of molybdenum were manufactured with different parameters. Wastage of electrode rule was also studied.


2011 ◽  
Vol 264-265 ◽  
pp. 1450-1455 ◽  
Author(s):  
Gunawan Setia Prihandana ◽  
Tutik Sriani ◽  
Kei Prihandana ◽  
Yuta Prihandana ◽  
Muslim Mahardika ◽  
...  

The application of powder mixed dielectric to improve the efficiency of electrical discharge machining (EDM) has been acknowledged extensively. However, the study of micro-size powder suspension in micro-EDM field is still limited. In this research, nano and micro size powder of MoS2 were used as catalyst agent. Powder suspension in different size was able to provide significant improvement in material removal rate and surface quality to increase the efficiency in μ- EDM processes.


2017 ◽  
Vol 64 (2) ◽  
pp. 149-163 ◽  
Author(s):  
Govindan Puthumana

AbstractTo achieve better precision of features generated using the micro-electrical discharge machining (micro-EDM), there is a necessity to minimize the wear of the tool electrode, because a change in the dimensions of the electrode is reflected directly or indirectly on the feature. This paper presents a novel modeling and analysis approach of the tool wear in micro-EDM using a systematic statistical method exemplifying the influences of capacitance, feed rate and voltage on the tool wear ratio. The association between tool wear ratio and the input factors is comprehended by using main effect plots, interaction effects and regression analysis. A maximum variation of four-fold in the tool wear ratio have been observed which indicated that the tool wear ratio varies significantly over the trials. As the capacitance increases from 1 to 10 nF, the increase in tool wear ratio is by 33%. An increase in voltage as well as capacitance would lead to an increase in the number of charged particles, the number of collisions among them, which further enhances the transfer of the proportion of heat energy to the tool surface. Furthermore, to model the tool wear phenomenon, a regression relationship between tool wear ratio and the process inputs has been developed.


Sign in / Sign up

Export Citation Format

Share Document