scholarly journals Wearable Woven Triboelectric Nanogenerator Utilizing Electrospun PVDF Nanofibers for Mechanical Energy Harvesting

Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 438 ◽  
Author(s):  
Muhammad Omar Shaikh ◽  
Yu-Bin Huang ◽  
Cheng-Chien Wang ◽  
Cheng-Hsin Chuang

Several wearable devices have already been commercialized and are likely to open up a new life pattern for consumers. However, the limited energy capacity and lifetime have made batteries the bottleneck in wearable technology. Thus, there have been growing efforts in the area of self-powered wearables that harvest ambient mechanical energy directly from surroundings. Herein, we demonstrate a woven triboelectric nanogenerator (WTENG) utilizing electrospun Polyvinylidene fluoride (PVDF) nanofibers and commercial nylon cloth to effectively harvest mechanical energy from human motion. The PVDF nanofibers were fabricated using a highly scalable multi-nozzle far-field centrifugal electrospinning protocol. We have also doped the PVDF nanofibers with small amounts of multi-walled carbon nanotubes (MWCNT) to improve their triboelectric performance by facilitating the growth of crystalline β-phase with a high net dipole moment that results in enhanced surface charge density during contact electrification. The electrical output of the WTENG was characterized under a range of applied forces and frequencies. The WTENG can be triggered by various free-standing triboelectric layers and reaches a high output voltage and current of about 14 V and 0.7 µA, respectively, for the size dimensions 6 × 6 cm. To demonstrate the potential applications and feasibility for harvesting energy from human motion, we have integrated the WTENG into human clothing and as a floor mat (or potential energy generating shoe). The proposed triboelectric nanogenerator (TENG) shows promise for a range of power generation applications and self-powered wearable devices.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3634
Author(s):  
Jianwei Wang ◽  
Zhizhen Zhao ◽  
Xiangwen Zeng ◽  
Xiyu Liu ◽  
Youfan Hu

The triboelectric nanogenerator (TENG) is a newly arisen technology for mechanical energy harvesting from the environment, such as raindrops, wind, tides, and so on. It has attracted widespread attention in flexible electronics to serve as self-powered sensors and energy-harvesting devices because of its flexibility, durability, adaptability, and multi-functionalities. In this work, we fabricated a tubular flexible triboelectric nanogenerator (TF-TENG) with energy harvesting and human motion monitoring capabilities by employing polydimethylsiloxane (PDMS) as construction material, and fluorinated ethylene propylene (FEP) films coated with Cu as the triboelectric layer and electrode, serving in a free-standing mode. The tube structure has excellent stretchability that can be stretched up to 400%. Modifying the FEP films to obtain a superhydrophobic surface, the output performance of TF-TENG was increased by at least 100% compared to an untreated one. Finally, as the output of TF-TENG is sensitive to swing angle and frequency, demonstration of real-time monitoring of human motion state was realized when a TF-TENG was worn on the wrist.


2014 ◽  
Vol 176 ◽  
pp. 447-458 ◽  
Author(s):  
Zhong Lin Wang

Triboelectrification is one of the most common effects in our daily life, but it is usually taken as a negative effect with very limited positive applications. Here, we invented a triboelectric nanogenerator (TENG) based on organic materials that is used to convert mechanical energy into electricity. The TENG is based on the conjunction of triboelectrification and electrostatic induction, and it utilizes the most common materials available in our daily life, such as papers, fabrics, PTFE, PDMS, Al, PVCetc.In this short review, we first introduce the four most fundamental modes of TENG, based on which a range of applications have been demonstrated. The area power density reaches 1200 W m−2, volume density reaches 490 kW m−3, and an energy conversion efficiency of ∼50–85% has been demonstrated. The TENG can be applied to harvest all kinds of mechanical energy that is available in our daily life, such as human motion, walking, vibration, mechanical triggering, rotation energy, wind, a moving automobile, flowing water, rain drops, tide and ocean waves. Therefore, it is a new paradigm for energy harvesting. Furthermore, TENG can be a sensor that directly converts a mechanical triggering into a self-generated electric signal for detection of motion, vibration, mechanical stimuli, physical touching, and biological movement. After a summary of TENG for micro-scale energy harvesting, mega-scale energy harvesting, and self-powered systems, we will present a set of questions that need to be discussed and explored for applications of the TENG. Lastly, since the energy conversion efficiencies for each mode can be different although the materials are the same, depending on the triggering conditions and design geometry. But one common factor that determines the performance of all the TENGs is the charge density on the two surfaces, the saturation value of which may independent of the triggering configurations of the TENG. Therefore, the triboelectric charge density or the relative charge density in reference to a standard material (such as polytetrafluoroethylene (PTFE)) can be taken as a measuring matrix for characterizing the performance of the material for the TENG.


2020 ◽  
Vol 8 (48) ◽  
pp. 25995-26003
Author(s):  
Kequan Xia ◽  
Di Wu ◽  
Jiangming Fu ◽  
Nur Amin Hoque ◽  
Ying Ye ◽  
...  

This study provides a novel wearable TENG based on nickel–copper bimetallic hydroxide nanowrinkles (NC-TENG) to harvest the mechanical energy from human motion.


2018 ◽  
Vol 148 ◽  
pp. 14005 ◽  
Author(s):  
Cristobal Garcia ◽  
Irina Trendafilova ◽  
Roberto Guzman de Villoria ◽  
Jose Sánchez del Río

In recent years, triboelectric nanogenerators (TENGs) are used to harvest mechanical energy from ambient environment. These devices convert ambient energies (e.g. vibrations, breathing-driven, impacts or human body motions) into electricity based on the triboelectric effect. Furthermore, some TENGs can be successfully employed as self-power active sensors because the electric response from the TENG is proportional to the magnitude of the mechanical motion. This study report on the design and development of a novel triboelectric nanogenerator, and its potential application as self-powered impact sensor. To prepare the TENG device, membranes of polyvinylidene fluoride (PVDF) and polyvinylpyrrolidone (PVP) nanofibers are sandwiched between copper electrode films and wrapped on PET films. The TENG works based on the triboelectric interaction between the membranes of nanofibers. After the preparation, the TENGs are subjected to several impacts by the drop-ball impact test. The purpose of the experiment is to analyse if the electric response of TENG is dependent on the energy of the impact. The results of the experiment are presented and discussed. The main contributions of this work are the preparation of a novel nanogenerator (TENG) based on the triboelectric interaction between polyvinylidene fluoride and polyvinylpyrrolidone sub-micron polymer fibers and the investigation of its potential use as a self-powered impact sensor.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2322
Author(s):  
Xiaofei Ma ◽  
Xuan Liu ◽  
Xinxing Li ◽  
Yunfei Ma

With the rapid development of the Internet of Things (IoTs), big data analytics has been widely used in the sport field. In this paper, a light-weight, self-powered sensor based on a triboelectric nanogenerator for big data analytics in sports has been demonstrated. The weight of each sensing unit is ~0.4 g. The friction material consists of polyaniline (PANI) and polytetrafluoroethylene (PTFE). Based on the triboelectric nanogenerator (TENG), the device can convert small amounts of mechanical energy into the electrical signal, which contains information about the hitting position and hitting velocity of table tennis balls. By collecting data from daily table tennis training in real time, the personalized training program can be adjusted. A practical application has been exhibited for collecting table tennis information in real time and, according to these data, coaches can develop personalized training for an amateur to enhance the ability of hand control, which can improve their table tennis skills. This work opens up a new direction in intelligent athletic facilities and big data analytics.


2021 ◽  
Author(s):  
Abdulrahman Mohmmed AlAhzm ◽  
Maan Omar Alejli ◽  
Deepalekshmi Ponnamma ◽  
Yara Elgawady ◽  
Mariam Al Ali Al-Maadeed

Abstract Piezoelectric nanogenerators (PENG) with flexible and simple design have pronounced significance in fabricating sustainable devices for self-powering electronics. This study demonstrates the fabrication of electrospun nanocomposite fibers from polyvinylidene fluoride (PVDF) filled Zinc Oxide (ZnO)/Iron Oxide (FeO) nanomaterials. The nanocomposite fiber based flexible PENG showed piezoelectric output voltage of 5.9 V when 3 wt.% of ZnO/FeO hybrid nanomaterial was introduced, which was 29.5 times higher than the neat PVDF. No apparent decline in output voltage was observed for almost 2000 seconds attributed to the outstanding durability. This higher piezoelectric output performance is correlated with the β-phase transformation studies from the Fourier transformation infrared spectroscopy and the crystallinity studies from the differential scanning calorimetry. Both these studies show respective enhancement of 3.79 and 2.16 % in the β-phase crystallinity values of PVDF-ZnO/FeO 3 wt.% composite. Higher dielectric constant value obtained for the same composite (3 times higher than the neat PVDF) confirms the increased energy storage efficiency as well. Thus the proposed soft and flexible PENG is a promising mechanical energy harvester, and its good dielectric properties reveals the ability to use this material as good power sources for wearable and flexible electronic devices.


Nanoscale ◽  
2017 ◽  
Vol 9 (38) ◽  
pp. 14499-14505 ◽  
Author(s):  
Yanchao Mao ◽  
Nan Zhang ◽  
Yingjie Tang ◽  
Meng Wang ◽  
Mingju Chao ◽  
...  

A novel paper triboelectric nanogenerator (P-TENG) was successfully developed. The P-TENG can harvest mechanical energy from the action of turning book pages, and the generated electricity could directly light up 80 commercial white light-emitting diodes (LEDs).


Author(s):  
Sugato Hajra ◽  
Manisha Sahu ◽  
Aneeta Manjari Padhan ◽  
Jaykishon Swain ◽  
Basanta Kumar Panigrahi ◽  
...  

Harvesting mechanical energy from surroundings can be a promising power source for micro/nano-devices. The triboelectric nanogenerator (TENG) works in the principle of triboelectrification and electrostatic induction. So far, the metals...


Nano Energy ◽  
2020 ◽  
Vol 78 ◽  
pp. 105381 ◽  
Author(s):  
Xiaojing Cui ◽  
Taochuang Zhao ◽  
Shuai Yang ◽  
Gang Xie ◽  
Zhiyi Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document