scholarly journals Core-Shell Beads Made by Composite Liquid Marble Technology as A Versatile Microreactor for Polymerase Chain Reaction

Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 242 ◽  
Author(s):  
Kamalalayam Rajan Sreejith ◽  
Lena Gorgannezhad ◽  
Jing Jin ◽  
Chin Hong Ooi ◽  
Takayuki Takei ◽  
...  

Over the last three decades, the protocols and procedures of the DNA amplification technique, polymerase chain reaction (PCR), have been optimized and well developed. However, there have been no significant innovations in processes for sample dispersion for PCR that have reduced the amount of single-use or unrecyclable plastic waste produced. To address the issue of plastic waste, this paper reports the synthesis and successful use of a core-shell bead microreactor using photopolymerization of a composite liquid marble as a dispersion process. This platform uses the core-shell bead as a simple and effective sample dispersion medium that significantly reduces plastic waste generated compared to conventional PCR processes. Other improvements over conventional PCR processes of the novel dispersion platform include increasing the throughput capability, enhancing the performance and portability of the thermal cycler, and allowing for the contamination-free storage of samples after thermal cycling.

2004 ◽  
Vol 18 (16) ◽  
pp. 775-784 ◽  
Author(s):  
DIETER BRAUN

The Polymerase Chain Reaction (PCR) allows for highly sensitive and specific amplification of DNA. It is the backbone of many genetic experiments and tests. Recently, three labs independently uncovered a novel and simple way to perform a PCR reaction. Instead of repetitive heating and cooling, a temperature gradient across the reaction vessel drives thermal convection. By convection, the reaction liquid circulates between hot and cold regions of the chamber. The convection triggers DNA amplification as the DNA melts into two single strands in the hot region and replicates into twice the amount in the cold region. The amplification progresses exponentially as the convection moves on. We review the characteristics of the different approaches and show the benefits and prospects of the method.


LWT ◽  
2015 ◽  
Vol 63 (1) ◽  
pp. 714-719 ◽  
Author(s):  
Sahilah Abd Mutalib ◽  
Nursheila Mustafa Muin ◽  
Aminah Abdullah ◽  
Osman Hassan ◽  
Wan Aida Wan Mustapha ◽  
...  

Genome ◽  
1993 ◽  
Vol 36 (4) ◽  
pp. 686-693 ◽  
Author(s):  
Benoit Van Coppenolle ◽  
Iwao Watanabe ◽  
Charles Van Hove ◽  
Gerard Second ◽  
Ning Huang ◽  
...  

The polymerase chain reaction was used to amplify random sequences of DNA from 25 accessions of Azolla to evaluate the usefulness of this technique for identification and phylogenetic analysis of this aquatic fern. Accessions were selected to represent all known species within the genus Azolla and to encompass the worldwide distribution of the fern. Primers of 10 nucleotides with 70% G + C content were used to generate randomly amplified polymorphic DNA from the symbiotic Azolla–Anabaena complex. Twenty-two primers were used and each primer gave 4–10 bands of different molecular weights for each accession. Bands were scored as present or absent for each accession and variation among accessions was quantified using Nei's genetic distances. A dendrogram summarizing phenetic relationships among the 25 accessions was generated using the unweighted pair-group method with arithmetic mean. Principal component analysis was also used to evaluate genetic similarities. Three distinct groups were identified: group 1 contains five species, group 2 contains the pinnata species, and group 3 contains the nilotica species. The analysis demonstrates that the major groups of Azolla species can be easily distinguished from one an other and, in addition, that closely related accessions within species can be identified. We further found that using 10 primers, a phylogeny that is essentially the same as that derived from 22 primers can be constructed. Our results suggest that total DNA extracted from the Azolla–Anabaena symbionts is useful for classification and phylogenetic studies of Azolla.Key words: Azolla–Anabaena symbiosis, genetic distances, polymerase chain reaction, principal component analysis.


Blood ◽  
1988 ◽  
Vol 71 (4) ◽  
pp. 1027-1032 ◽  
Author(s):  
DB Duggan ◽  
GD Ehrlich ◽  
FP Davey ◽  
S Kwok ◽  
J Sninsky ◽  
...  

Abstract A patient with a localized HTLV-I-associated lymphoproliferative disease that was misdiagnosed as Hodgkin's disease is presented. The patient's serum was negative for HTLV-I antibodies by enzyme-linked immunosorbent assay (ELISA), Western blot, and radioimmunoprecipitation. Tumor tissue DNA was negative for HTLV-I by Southern blotting but was positive for distinct HTLV-I sequences when subjected to DNA amplification using the polymerase chain reaction. We conclude that the clinical and pathologic diagnosis of HTLV-I-related lymphoma can be difficult and can be confused with Hodgkin's disease. Extremely sensitive molecular biological techniques may be required to establish a diagnosis of HTLV-I-induced lymphoma.


2018 ◽  
Vol 14 (2) ◽  
pp. 213-218
Author(s):  
Chong Kim Soon ◽  
Nawoor Anusha Devi ◽  
Kok Beng Gan ◽  
Sue-Mian Then

A thermal cycler is used to amplify segments of DNA using the polymerase chain reaction (PCR). It is an instrument that requires precise temperature control and rapid temperature changes for certain experimental protocols. However, the commercial thermal cyclers are still bulky, expensive and limited for laboratory use only.  As such it is difficult for on-site molecular screening and diagnostics. In this work, a portable and low cost thermal cycler was designed and developed. The thermal cycler block was designed to fit six microcentrifuge tubes. A Proportional-Integral temperature controller was used to control the thermal cycler block temperature. The results showed that the maximum temperature ramp rate of the developed thermal cycler was 5.5 °C/s. The proportional gain (Kp) and integral gain (Ki) of the PI controller were 15 A/V and 1.8 A/Vs respectively. Finally, the developed thermal cycler successfully amplified six DNA samples at the expected molecular weight of 150 base pair. It has been validated using the Eppendorf Mastercycler nexus gradient system and gel electrophoresis analysis


2005 ◽  
Vol 131 (12) ◽  
pp. 821-828 ◽  
Author(s):  
S. Chariyalertsak ◽  
T. Khuhaprema ◽  
V. Bhudisawasdi ◽  
B. Sripa ◽  
S. Wongkham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document