scholarly journals Recent Advances on Thermal Management of Flexible Inorganic Electronics

Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 390 ◽  
Author(s):  
Yuhang Li ◽  
Jiayun Chen ◽  
Shuang Zhao ◽  
Jizhou Song

Flexible inorganic electronic devices (FIEDs) consisting of functional inorganic components on a soft polymer substrate have enabled many novel applications such as epidermal electronics and wearable electronics, which cannot be realized through conventional rigid electronics. The low thermal dissipation capacity of the soft polymer substrate of FIEDs demands proper thermal management to reduce the undesired thermal influences. The biointegrated applications of FIEDs pose even more stringent requirements on thermal management due to the sensitive nature of biological tissues to temperature. In this review, we take microscale inorganic light-emitting diodes (μ-ILEDs) as an example of functional components to summarize the recent advances on thermal management of FIEDs including thermal analysis, thermo-mechanical analysis and thermal designs of FIEDs with and without biological tissues. These results are very helpful to understand the underlying heat transfer mechanism and provide design guidelines to optimize FIEDs in practical applications.

2015 ◽  
Vol 3 (1) ◽  
pp. 128-143 ◽  
Author(s):  
Jizhou Song ◽  
Xue Feng ◽  
Yonggang Huang

Abstract Stretchable electronics enables lots of novel applications ranging from wearable electronics, curvilinear electronics to bio-integrated therapeutic devices that are not possible through conventional electronics that is rigid and flat in nature. One effective strategy to realize stretchable electronics exploits the design of inorganic semiconductor material in a stretchable format on an elastomeric substrate. In this review, we summarize the advances in mechanics and thermal management of stretchable electronics based on inorganic semiconductor materials. The mechanics and thermal models are very helpful in understanding the underlying physics associated with these systems, and they also provide design guidelines for the development of stretchable inorganic electronics.


iScience ◽  
2021 ◽  
pp. 102698
Author(s):  
Phillip Won ◽  
Seongmin Jeong ◽  
Carmel Majidi ◽  
Seung Hwan Ko

Nanoscale ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 6373-6388
Author(s):  
Yanan Tang ◽  
Zhen Qin ◽  
Shengyan Yin ◽  
Hang Sun

This review summarizes the recent advances of transition metal oxide and chalcogenide-based antibacterial nanomaterials, with emphasis on their inactivation mechanisms and highlighting their practical applications.


Author(s):  
Mingyue Wang ◽  
Hongming Zhang ◽  
Jiang Cui ◽  
Shanshan Yao ◽  
Xi Shen ◽  
...  

Author(s):  
Stephen A. Solovitz

As electronics devices continue to increase in thermal dissipation, novel methods will be necessary for effective thermal management. Many macro-scale enhancement techniques have been developed to improve internal flow heat transfer, with a dimple feature being particularly promising due to its enhanced mixing with potentially little pressure penalty. However, because dimples may be difficult to fashion in microchannels, two-dimensional grooves are considered here as a similar alternate solution. Computational fluid dynamics methods are used to analyze the flow and thermal performance for a groove-enhanced microchannel, and the effectiveness is determined for a range of feature depths, diameters, and flow Reynolds numbers. By producing local impingement and flow redevelopment downstream of the groove, thermal enhancements on the order of 70% were achieved with pressure increases of only 30%. Further optimization of this concept should allow the selection of an appropriate application geometry, which can be studied experimentally to validate the concept.


2019 ◽  
Vol 119 (13) ◽  
pp. 8028-8086 ◽  
Author(s):  
Changyeon Lee ◽  
Seungjin Lee ◽  
Geon-U Kim ◽  
Wonho Lee ◽  
Bumjoon J. Kim

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1756
Author(s):  
Shinpei Ogawa ◽  
Masafumi Kimata

Plasmonics and metamaterials are growing fields that consistently produce new technologies for controlling electromagnetic waves. Many important advances in both fundamental knowledge and practical applications have been achieved in conjunction with a wide range of materials, structures and wavelengths, from the ultraviolet to the microwave regions of the spectrum. In addition to this remarkable progress across many different fields, much of this research shares many of the same underlying principles, and so significant synergy is expected. This Special Issue introduces the recent advances in plasmonics and metamaterials and discusses various applications, while addressing a wide range of topics in order to explore the new horizons emerging for such research.


Sign in / Sign up

Export Citation Format

Share Document