PA Thermal Management and Packaging: Wideband PA and Packaging, History, and Recent Advances: Part 2

2016 ◽  
Vol 17 (11) ◽  
pp. 73-81 ◽  
Author(s):  
Kamal K. Samanta
Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 390 ◽  
Author(s):  
Yuhang Li ◽  
Jiayun Chen ◽  
Shuang Zhao ◽  
Jizhou Song

Flexible inorganic electronic devices (FIEDs) consisting of functional inorganic components on a soft polymer substrate have enabled many novel applications such as epidermal electronics and wearable electronics, which cannot be realized through conventional rigid electronics. The low thermal dissipation capacity of the soft polymer substrate of FIEDs demands proper thermal management to reduce the undesired thermal influences. The biointegrated applications of FIEDs pose even more stringent requirements on thermal management due to the sensitive nature of biological tissues to temperature. In this review, we take microscale inorganic light-emitting diodes (μ-ILEDs) as an example of functional components to summarize the recent advances on thermal management of FIEDs including thermal analysis, thermo-mechanical analysis and thermal designs of FIEDs with and without biological tissues. These results are very helpful to understand the underlying heat transfer mechanism and provide design guidelines to optimize FIEDs in practical applications.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2797 ◽  
Author(s):  
Hongli Zhang ◽  
Tiezhu Shi ◽  
Aijie Ma

The boosting of consumer electronics and 5G technology cause the continuous increment of the power density of electronic devices and lead to inevitable overheating problems, which reduces the operation efficiency and shortens the service life of electronic devices. Therefore, it is the primary task and a prerequisite to explore innovative material for meeting the requirement of high heat dissipation performance. In comparison with traditional thermal management material (e.g., ceramics and metals), the polymer-based thermal management material exhibit excellent mechanical, electrical insulation, chemical resistance and processing properties, and therefore is considered to be the most promising candidate to solve the heat dissipation problem. In this review, we summarized the recent advances of two typical polymer-based thermal management material including thermal-conduction thermal management material and thermal-storage thermal management material. Furtherly, the structural design, processing strategies and typical applications for two polymer-based thermal management materials were discussed. Finally, we proposed the challenges and prospects of the polymer-based thermal management material. This work presents new perspectives to develop advanced processing approaches and construction high-performance polymer-based thermal management material.


2020 ◽  
Vol 22 ◽  
pp. 100528
Author(s):  
Chang-Ping Feng ◽  
Lu-Yao Yang ◽  
Jie Yang ◽  
Lu Bai ◽  
Rui-Ying Bao ◽  
...  

Coatings ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 63 ◽  
Author(s):  
Feng Gong ◽  
Hao Li ◽  
Wenbin Wang ◽  
Dawei Xia ◽  
Qiming Liu ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3337
Author(s):  
Md. Abdul Alim ◽  
Mohd Zulkifly Abdullah ◽  
Mohd Sharizal Abdul Aziz ◽  
R. Kamarudin ◽  
Prem Gunnasegaran

The application of epoxy adhesive is widespread in electronic packaging. Epoxy adhesives can be integrated with various types of nanoparticles for enhancing thermal conductivity. The joints with thermally conductive adhesive (TCA) are preferred for research and advances in thermal management. Many studies have been conducted to increase the thermal conductivity of epoxy-based TCAs by conductive fillers. This paper reviews and summarizes recent advances of these available fillers in TCAs that contribute to electronic packaging. It also covers the challenges of using the filler as a nano-composite. Moreover, the review reveals a broad scope for future research, particularly on thermal management by nanoparticles and improving bonding strength in electronic packaging.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Jae Choon Kim ◽  
Zongqing Ren ◽  
Anil Yuksel ◽  
Ercan M. Dede ◽  
Prabhakar R. Bandaru ◽  
...  

Abstract Thermal metamaterials exhibit thermal properties that do not exist in nature but can be rationally designed to offer unique capabilities of controlling heat transfer. Recent advances have demonstrated successful manipulation of conductive heat transfer and led to novel heat guiding structures such as thermal cloaks, concentrators, etc. These advances imply new opportunities to guide heat transfer in complex systems and new packaging approaches as related to thermal management of electronics. Such aspects are important, as trends of electronics packaging toward higher power, higher density, and 2.5D/3D integration are making thermal management even more challenging. While conventional cooling solutions based on large thermal-conductivity materials as well as heat pipes and heat exchangers may dissipate the heat from a source to a sink in a uniform manner, thermal metamaterials could help dissipate the heat in a deterministic manner and avoid thermal crosstalk and local hot spots. This paper reviews recent advances of thermal metamaterials that are potentially relevant to electronics packaging. While providing an overview of the state-of-the-art and critical 2.5D/3D-integrated packaging challenges, this paper also discusses the implications of thermal metamaterials for the future of electronic packaging thermal management. Thermal metamaterials could provide a solution to nontrivial thermal management challenges. Future research will need to take on the new challenges in implementing the thermal metamaterial designs in high-performance heterogeneous packages to continue to advance the state-of-the-art in electronics packaging.


2021 ◽  
Author(s):  
Qun Liu ◽  
Bin Tian ◽  
Jing Liang ◽  
Wei Wu

This review presents the recent progress of printed flexible heaters for portable and wearable thermal management.


1988 ◽  
Vol 132 ◽  
pp. 525-530
Author(s):  
Raffaele G. Gratton

The use CCD detectors has allowed a major progress in abundance derivations for globular cluster stars in the last years. Abundances deduced from high dispersion spectra now correlates well with other abundance indicators. I discuss some problems concerning the derivation of accurate metal abundances for globular clusters using high dispersion spectra from both the old photographic and the most recent CCD data. The discrepant low abundances found by Cohen (1980), from photographic material for M71 giants, are found to be due to the use of too high microturbulences.


Sign in / Sign up

Export Citation Format

Share Document