scholarly journals Experimental Investigation on a Novel Airfoil-Based Piezoelectric Energy Harvester for Aeroelastic Vibration

Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 725
Author(s):  
Xiaobiao Shan ◽  
Haigang Tian ◽  
Han Cao ◽  
Ju Feng ◽  
Tao Xie

This paper presents a novel airfoil-based piezoelectric energy harvester (EH) with two small square prisms attached to an airfoil. This harvester can achieve a two degree-of-freedom (DOF) plunge–pitch motions. Several prototypes of energy harvester were fabricated to explore the nonlinear aerodynamic response and the output performance in a wind tunnel. The experimental results showed that the longer the flexible spring was, the lower the critical velocity and frequency of the harvester were, and the better aerodynamic response and output performance could be achieved. The initial disturbance, the following limit-cycle oscillation, and the ultimate chaos of nonlinear response occurred, as increasing airflow velocity was increased. The overall output performance of the harvesters with a flexible spring having a thickness of 1 mm outperformed than that of the harvesters with a flexible spring having a thickness of 0.5 mm at a higher airflow velocity, while the tendency was opposite at a lower velocity. An optimum output voltage of 17.48 V and a power of 0.764 mW were harvested for EH-160-1 at 16.32 m/s, which demonstrated it possessed better performance than the other harvesters. When the capacitor was charged for 45 s and directly drove a sensor, it could maintain working for 17 s to display temperature and humidity in real time.

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3101
Author(s):  
Xiaobiao Shan ◽  
Haigang Tian ◽  
Han Cao ◽  
Tao Xie

This paper proposes a novel and efficient energy harvester (EH) system, for capturing simultaneously flutter and vortex-induced vibration. There exists a coupling effect between flexible spring energy harvester (FSEH) and cantilever beam energy harvester (CBEH) in aerodynamic response and output characteristic. Many prototypes of the harvester were manufactured to explore the coupling effect in a wind tunnel. The experimental results demonstrate that FSEH is mainly subjected to flutter-induced vibration and CBEH undergoes vortex-induced vibration. Disturbance of FSEH first takes place, a limited oscillation cycle then occurs, and chaos ultimately happens as airflow velocity increase. Root mean square voltages are more than 11 V for FSEH at beyond 10.52 m/s, which shows the better output performance over the existing harvesters. Vibration response and output voltage of various harvesters are mutually enhanced with each other. An enhancing ratio for FSEH-130-25 is up to 69.6% over FSEH-130-0, while the enhancing ratio for CBEH-130-30 is 198.3% compared to CBEH-0-30. Field application testing manifests that discharging time to power the pedometer is almost twice as long as the charging one for FSEH-130-25 at 14.48 m/s. The current research offers a suggestive guidance for promoting future practical application in micro airfoil aircrafts.


Author(s):  
Matthew Bryant ◽  
Ricky Tse ◽  
Ephrahim Garcia

This paper experimentally investigates the interactions between host structure compliance and natural frequency and the behavior of a fluttering piezoelectric energy harvester. Unlike the base excitation case where a piezoelectric energy harvester extracts energy from a vibrating base structure, the aeroelastic flutter energy harvester generates limit cycle oscillations from an ambient fluid flow. The flow induced oscillatory motion of the energy harvester can transfer energy into the host mounting structure, and may introduce significant vibrations in the structure as well affect the behavior of the energy harvester itself. The energy harvester motion and electrical output is compared for a rigid host structure, as well as a flexible host structure, and the vibrations induced in the host structures are also be examined. The results show significant effects on the energy harvester cut-in wind speed, power output, flutter limit cycle oscillation frequency, and optimal electrical load as a result of the host structure compliance.


2021 ◽  
pp. 107754632199358
Author(s):  
Ali Fasihi ◽  
Majid Shahgholi ◽  
Saeed Ghahremani

The potential of absorbing and harvesting energy from a two-degree-of-freedom airfoil using an attachment of a nonlinear energy sink and a piezoelectric energy harvester is investigated. The equations of motion of the airfoil coupled with the attachment are solved using the harmonic balance method. Solutions obtained by this method are compared to the numerical ones of the pseudo-arclength continuation method. The effects of parameters of the integrated nonlinear energy sink-piezoelectric attachment, namely, the attachment location, nonlinear energy sink mass, nonlinear energy sink damping, and nonlinear energy sink stiffness on the dynamical behavior of the airfoil system are studied for both subcritical and supercritical Hopf bifurcation cases. Analyses demonstrate that absorbing vibration and harvesting energy are profoundly affected by the nonlinear energy sink parameters and the location of the attachment.


2018 ◽  
Vol 5 (8) ◽  
pp. 085704 ◽  
Author(s):  
Dan Zhao ◽  
Minyao Gan ◽  
Chihang Zhang ◽  
Jundong Wei ◽  
Shaogang Liu ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 640
Author(s):  
Nannan Zhou ◽  
Rongqi Li ◽  
Hongrui Ao ◽  
Chuanbing Zhang ◽  
Hongyuan Jiang

With the rapid development of microelectronics technology, low-power electronic sensors have been widely applied in many fields, such as Internet of Things, aerospace, and so on. In this paper, a symmetrical ring-shaped piezoelectric energy harvester (SR-PEH) is designed to provide energy for the sensor to detect the ambient temperature. The finite element method is used by utilizing software COMSOL 5.4, and the electromechanical coupling model of the piezoelectric cantilever is established. The output performance equations are proposed; the microelectromechanical system (MEMS) integration process of the SR-PEH, circuit, and sensor is stated; and the changing trend of the output power density is explained from an energy perspective. In the logarithmic coordinate system, the results indicate that the output voltage and output power are approximately linear with the temperature when the resistance is constant. In addition, the growth rate of the output voltage and output power decreases with an increase of resistance under the condition of constant temperature. In addition, with an increase of temperature, the growth rate of the output power is faster than that of the output voltage. Furthermore, resistance has a more dramatic effect on the output voltage, whereas temperature has a more significant effect on the output power. More importantly, the comparison with the conventional cantilever-shaped piezoelectric energy harvester (CC-PEH) shows that the SR-PEH can improve the output performance and broaden the frequency band.


Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 667 ◽  
Author(s):  
Jinda Jia ◽  
Xiaobiao Shan ◽  
Deepesh Upadrashta ◽  
Tao Xie ◽  
Yaowen Yang ◽  
...  

This paper presents an upright piezoelectric energy harvester (UPEH) with cylinder extension along its longitudinal direction. The UPEH can generate energy from low-speed wind by bending deformation produced by vortex-induced vibrations (VIVs). The UPEH has the advantages of less working space and ease of setting up an array over conventional vortex-induced vibration harvesters. The nonlinear distributed modeling method is established based on Euler–Bernoulli beam theory and aerodynamic vortex-induced force of the cylinder is obtained by the van der Pol wake oscillator theory. The fluid–solid–electricity governing coupled equations are derived using Lagrange’s equation and solved through Galerkin discretization. The effect of cylinder gravity on the dynamic characteristics of the UPEH is also considered using the energy method. The influences of substrate dimension, piezoelectric dimension, the mass of cylinder extension, and electrical load resistance on the output performance of harvester are studied using the theoretical model. Experiments were carried out and the results were in good agreement with the numerical results. The results showed that a UPEH configuration achieves the maximum power of 635.04 μW at optimum resistance of 250 kΩ when tested at a wind speed of 4.20 m/s. The theoretical results show that the UPEH can get better energy harvesting output performance with a lighter tip mass of cylinder, and thicker and shorter substrate in its synchronization working region. This work will provide the theoretical guidance for studying the array of multiple upright energy harvesters.


Sign in / Sign up

Export Citation Format

Share Document