scholarly journals Performance Evaluation of a Magnetically Driven Microrobot for Targeted Drug Delivery

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1210
Author(s):  
Zhuocong Cai ◽  
Qiang Fu ◽  
Songyuan Zhang ◽  
Chunliu Fan ◽  
Xi Zhang ◽  
...  

Given that the current microrobot cannot achieve fixed-point and quantitative drug application in the gastrointestinal (GI) tract, a targeted drug delivery microrobot is proposed, and its principle and characteristics are studied. Through the control of an external magnetic field, it can actively move to the affected area to realize the targeted drug delivery function. The microrobot has a cam structure connected with a radially magnetized permanent magnet, which can realize two movement modes: movement and targeted drug delivery. Firstly, the magnetic actuated capsule microrobotic system (MACMS) is analyzed. Secondly, the dynamic model and quantitative drug delivery model of the targeted drug delivery microrobot driven by the spiral jet structure are established, and the motion characteristics of the targeted drug delivery microrobot are simulated and analyzed by the method of Computational Fluid Dynamics (CFD). Finally, the whole process of the targeted drug delivery task of the microrobot is simulated. The results show that the targeted drug delivery microrobot can realize basic movements such as forward, backward, fixed-point parking and drug delivery through external magnetic field control, which lays the foundation for gastrointestinal diagnosis and treatment.

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1832 ◽  
Author(s):  
Ylenia Jabalera ◽  
Francesca Oltolina ◽  
Ana Peigneux ◽  
Alberto Sola-Leyva ◽  
Maria P. Carrasco-Jiménez ◽  
...  

The design of novel nanomaterials that can be used as multifunctional platforms allowing the combination of therapies is gaining increased interest. Moreover, if this nanomaterial is intended for a targeted drug delivery, the use of several guidance methods to increase guidance efficiency is also crucial. Magnetic nanoparticles (MNPs) allow this combination of therapies and guidance strategies. In fact, MNPs can be used simultaneously as drug nanocarriers and magnetic hyperthermia agents and, moreover, they can be guided toward the target by an external magnetic field and by their functionalization with a specific probe. However, it is difficult to find a system based on MNPs that exhibits optimal conditions as a drug nanocarrier and as a magnetic hyperthermia agent. In this work, a novel nanoformulation is proposed to be used as a multifunctional platform that also allows dual complementary guidance. This nanoformulation is based on mixtures of inorganic magnetic nanoparticles (M) that have been shown to be optimal hyperthermia agents, and biomimetic magnetic nanoparticles (BM), that have been shown to be highly efficient drug nanocarriers. The presence of the magnetosome protein MamC at the surface of BM confers novel surface properties that allow for the efficient and stable functionalization of these nanoparticles without the need of further coating, with the release of the relevant molecule being pH-dependent, improved by magnetic hyperthermia. The BM are functionalized with Doxorubicin (DOXO) as a model drug and with an antibody that allows for dual guidance based on a magnetic field and on an antibody. The present study represents a proof of concept to optimize the nanoformulation composition in order to provide the best performance in terms of the magnetic hyperthermia agent and drug nanocarrier.


Author(s):  
Reza Kamali ◽  
Gholamreza Keshavarzi

Development of novel particle carrier methods has led to enhanced advances in targeted drug delivery. This paper has aimed the investigation of targeting drugs via attached magnetic particles into human body. This goal was approached by inducing a magnetic field near a specific part of the human body to target the drug or as it is called magnetic drug targeting (MDT). Blood flow and magnetic particles are simulated under the presence of the specified properties of a magnetic field. In order to demonstrate a more realistic simulation, the flow was considered pulsatile. Finally, the results provided show valuable information on magnetic drug targeting in human body.


Nanomedicine ◽  
2019 ◽  
Vol 14 (23) ◽  
pp. 3105-3122 ◽  
Author(s):  
Deti Nurhidayah ◽  
Ali Maruf ◽  
Xiaojuan Zhang ◽  
Xiaoling Liao ◽  
Wei Wu ◽  
...  

Nanoplatforms have been used extensively as advanced carriers to enhance the effectiveness of drug delivery, mostly through passive aggregation provided by the enhanced permeability and retention effect. Mechanical stimuli provide a robust strategy to bolster drug delivery performance by increasing the accumulation of nanoplatforms at the lesion sites, facilitating on-demand cargo release and providing theranostic aims. In this review, we focus on recent advances of mechanoresponsive nanoplatforms that can accomplish targeted drug delivery, and subsequent drug release, under specific stimuli, either endogenous (shear stress) or exogenous (magnetic field and ultrasound), to synergistically combat atherosclerosis at the molecular level.


2020 ◽  
Vol 20 (10) ◽  
pp. 1233-1240
Author(s):  
Maryam Parsian ◽  
Pelin Mutlu ◽  
Serap Yalcin ◽  
Ufuk Gunduz

Background: Targeted drug delivery is one of the recent hot topics in cancer therapy. Because of having a targeting potential under the magnetic field and a suitable surface for the attachment of different therapeutic moieties, magnetic nanoparticles are widely studied for their applications in medicine. Objective: Gemcitabine loaded polyhydroxybutyrate coated magnetic nanoparticles (Gem-PHB-MNPs) were synthesized and characterized for the treatment of breast cancer by the targeted drug delivery method. Methods: The characterization of nanoparticles was confirmed by FTIR, XPS, TEM, and spectrophotometric analyses. The cytotoxicities of drug-free nanoparticles and Gemcitabine loaded nanoparticles were determined with cell proliferation assay using SKBR-3 and MCF-7 breast cancer cell lines. Result: The release of Gemcitabine from PHB-MNPs indicated a pH-dependent pattern, which is a desirable release characteristic, since the pH of the tumor microenvironment and endosomal structures are acidic, while bloodstream and healthy-tissues are neutral. Drug-free PHB-MNPs were not cytotoxic to the SKBR-3 and MCF- 7 cells, whereas the Gemcitabine loaded PHB-MNPs was about two-fold as cytotoxic with respect to free Gemcitabine. In vitro targeting ability of PHB-MNPs was shown under the magnetic field. Conclusion: Considering these facts, we may suggest that these nanoparticles can be a promising candidate for the development of a novel targeted drug delivery system for breast cancer.


Author(s):  
Hassan Masoud ◽  
Alexander Kilimnik ◽  
Alexander Alexeev

Magnetic microcapsules are often used as vesicles in targeted drug delivery systems, where focused magnetic field propels the capsules to highly specific locations in tissue. To fully realize this potential it is important to understand the dynamics of magnetically-responsive micrometer sized particles in viscous fluids and the effect of boundaries on particle motion. Furthermore, for practical biomedical applications, it could be useful to create synthetic micrometer-sized vesicles able to perform controlled self-propelled motion. Herein, using computer simulations, we examine the motion of magnetically-responsive synthetic microcapsules that able to crawl along walls in microchannels filled with a viscous fluid. The compliant fluid-filled capsules considered in this study encompass superparamagnetic nanoparticles in their solid shells and, therefore, can be manipulated by alternating magnetic forces.


Computation ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 10 ◽  
Author(s):  
Anusmriti Ghosh ◽  
Mohammad S. Islam ◽  
Suvash C. Saha

Aerosolized drug inhalation plays an important role in the treatment of respiratory diseases. All of the published in silico, in vivo, and in vitro studies have improved the knowledge of aerosol delivery in the human respiratory system. However, aerosolized magnetic nano-particle (MNP) transport and deposition (TD) for the specific position of the human lung are still unavailable in the literature. Therefore, this study is aimed to provide an understanding of the magnetic nano-particle TD in the targeted region by imposing an external magnetic field for the development of future therapeutics. Uniform aerosolized nano-particle TD in the specific position of the lung airways will be modelled by adopting turbulence k–ω low Reynolds number simulation. The Euler–Lagrange (E–L) approach and the magneto hydrodynamics (MHD) model are incorporated in the ANSYS fluent (18.0) solver to investigate the targeted nano-particle TD. The human physical activity conditions of sleeping, resting, light activity and fast breathing are considered in this study. The aerosolized drug particles are navigated to the targeted position under the influence of external magnetic force (EMF), which is applied in two different positions of the two-generation lung airways. A numerical particle tracing model is also developed to predict the magnetic drug targeting behavior in the lung. The numerical results reveal that nano-particle deposition efficiency (DE) in two different magnetic field position is different for various physical activities, which could be helpful for targeted drug delivery to a specific region of the lung after extensive clinical trials. This process will also be cost-effective and will minimize unwanted side effects due to systemic drug distribution in the lung.


Sign in / Sign up

Export Citation Format

Share Document