scholarly journals A Temperature Control Method for Microaccelerometer Chips Based on Genetic Algorithm and Fuzzy PID Control

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1511
Author(s):  
Jiaxiao Chen ◽  
Qianbo Lu ◽  
Jian Bai ◽  
Xiang Xu ◽  
Yuan Yao ◽  
...  

External temperature changes can detrimentally affect the properties of a microaccelerometer, especially for high-precision accelerometers. Temperature control is the fundamental method to reduce the thermal effect on microaccelerometer chips, although high-performance control has remained elusive using the conventional proportional-integral-derivative (PID) control method. This paper proposes a modified approach based on a genetic algorithm and fuzzy PID, which yields a profound improvement compared with the typical PID method. A sandwiched microaccelerometer chip with a measurement resistor and a heating resistor on the substrate serves as the hardware object, and the transfer function is identified by a self-built measurement system. The initial parameters of the modified PID are obtained through the genetic algorithm, whereas a fuzzy strategy is implemented to enable real-time adjustment. According to the simulation results, the proposed temperature control method has the advantages of a fast response, short settling time, small overshoot, small steady-state error, and strong robustness. It outperforms the normal PID method and previously reported counterparts. This design method as well as the approach can be of practical use and applied to chip-level package structures.

2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


2021 ◽  
Author(s):  
Yang Xu ◽  
Sheng Wang ◽  
Ying Peng

Thermal print head heating realtime temperature fluctuations are too large, often causing damage to the print head heating point, resulting in poor print quality and unsatisfactory print results. Therefore, in order to improve the stability of the thermal print head during printing, and at the same time solve the inefficiency of the traditional single chip microcomputer control of the thermal print head heating method, a field programmable gate array (FPGA) based thermal print head heating control method is proposed. In order to control the core, the intelligent fuzzy PID control algorithm is used to ensure that the temperature of the print head can be stabilized quickly. Through simulation and experimental verification, it is shown that the intelligent fuzzy PID control algorithm greatly improves the temperature stabilization effect, and the time required to reach stability short, not only improve the printing accuracy, but also extend the life of the print head.


2012 ◽  
Vol 217-219 ◽  
pp. 2463-2466 ◽  
Author(s):  
Xue Gang Hou ◽  
Cheng Long Wang

Induction heating furnace temperature control is a complex nonlinear hysteretic inertial process, it's difficult to obtain an accurate mathematical model because the temperature and disturb from outside is complicated. The normal PID control algorithm is hard to satisfy the standards of control. The fuzzy PID controller provided in this article is a combination between fuzzy control and the traditional PID control. The Fuzzy control theory is used to setting the ratio, the integral and the differential coefficient of the PID control. In the run-up stage, rapidity is guaranteed, overstrike and the steady-state error is up to the mustard. An example indicates that fuzzy PID control is superior to the normal PID controller.


2011 ◽  
Vol 383-390 ◽  
pp. 2991-2995
Author(s):  
Chang Hong Jiang ◽  
Shao Zhong Lu ◽  
Lian Fang Liu

This paper mainly describes the reasons for compressor surge and damage, and provide the traditional control method, which can not meet the growing needs, the improved control method, which according to the data using least squares curve to determine surge control regression equation and make the compressor operate safely by using the fuzzy PID control algorithm on the parameter adjustment.


2011 ◽  
Vol 2-3 ◽  
pp. 489-494
Author(s):  
Zhi Yong Sun ◽  
Wen Lin Chen ◽  
Yun Quan Su ◽  
Li Na Hao

This article is intended to design a static micro-force sensor with a simple structure employing the polymer material PVDF (polyvinylidene fluoride) film as its sensing element, and will carry out some micro-force tracking tests. During the tracking tests, this paper employs a Fuzzy-PID control method and an ordinary PD control method to control the system, and will also analyze the results of them.


2014 ◽  
Vol 494-495 ◽  
pp. 1582-1586 ◽  
Author(s):  
Jun Liu ◽  
Qian Wei Xie

Focusing on the non-linear, time-varying, strong coupling and external load disturbance existing in PMLSM, a fuzzy PID controller based on genetic algorithms is designed to control the speed of PMLSM by absorbing the advantages of PID control and fuzzy control, and the genetic algorithm method is used to optimize fuzzy control rules. A simulation experiment was made to compare the effects of traditional PID control and fuzzy PID based on genetic algorithm control by Matlab. The simulation results verify that fuzzy PID control based on genetic algorithm is superior to PID control in dynamic stability performance and speed tracking power.


Sign in / Sign up

Export Citation Format

Share Document