scholarly journals Multiple Bio-Inspired Father–Son Underwater Robot for Underwater Target Object Acquisition and Identification

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 25
Author(s):  
Ruochen An ◽  
Shuxiang Guo ◽  
Yuanhua Yu ◽  
Chunying Li ◽  
Tendeng Awa

Underwater target acquisition and identification performed by manipulators having broad application prospects and value in the field of marine development. Conventional manipulators are too heavy to be used for small target objects and unsuitable for shallow sea working. In this paper, a bio-inspired Father–Son Underwater Robot System (FURS) is designed for underwater target object image acquisition and identification. Our spherical underwater robot (SUR), as the father underwater robot of the FURS, has the ability of strong dynamic balance and good maneuverability, can realize approach the target area quickly, and then cruise and surround the target object. A coiling mechanism was installed on SUR for the recycling and release of the son underwater robot. A Salamandra-inspired son underwater robot is used as the manipulator of the FURS, which is connected to the spherical underwater robot by a tether. The son underwater robot has multiple degrees of freedom and realizes both swimming and walking movement modes. The son underwater robot can move to underwater target objects. The vision system is installed to enable the FURS to acquire the image information of the target object with the aid of the camera, and also to identify the target object. Finally, verification experiments are conducted in an indoor water tank and outdoor swimming pool conditions to verify the effectiveness of the proposed in this paper.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 391
Author(s):  
Luca Bigazzi ◽  
Stefano Gherardini ◽  
Giacomo Innocenti ◽  
Michele Basso

In this paper, solutions for precise maneuvering of an autonomous small (e.g., 350-class) Unmanned Aerial Vehicles (UAVs) are designed and implemented from smart modifications of non expensive mass market technologies. The considered class of vehicles suffers from light load, and, therefore, only a limited amount of sensors and computing devices can be installed on-board. Then, to make the prototype capable of moving autonomously along a fixed trajectory, a “cyber-pilot”, able on demand to replace the human operator, has been implemented on an embedded control board. This cyber-pilot overrides the commands thanks to a custom hardware signal mixer. The drone is able to localize itself in the environment without ground assistance by using a camera possibly mounted on a 3 Degrees Of Freedom (DOF) gimbal suspension. A computer vision system elaborates the video stream pointing out land markers with known absolute position and orientation. This information is fused with accelerations from a 6-DOF Inertial Measurement Unit (IMU) to generate a “virtual sensor” which provides refined estimates of the pose, the absolute position, the speed and the angular velocities of the drone. Due to the importance of this sensor, several fusion strategies have been investigated. The resulting data are, finally, fed to a control algorithm featuring a number of uncoupled digital PID controllers which work to bring to zero the displacement from the desired trajectory.


2006 ◽  
Vol 03 (02) ◽  
pp. 153-175 ◽  
Author(s):  
MIOMIR VUKOBRATOVIĆ ◽  
BRANISLAV BOROVAC ◽  
VELJKO POTKONJAK

One of basic characteristics of the regular bipedal walk of humanoid robots is the maintenance of their dynamic balance during the walk, whereby a decisive role is played by the unpowered degrees of freedom arising at the foot–ground contact. Hence, the role of the Zero-Moment Point (ZMP) as an indicator of dynamic balance is indispensable. This paper gives a detailed discussion of some basic theoretical assumptions related to the ZMP in the light of imprecise, and even incorrect, interpretations that have recently appeared, and which have led to some erroneous conclusions. Examples are given to show some erroneous basic attitudes and the genesis of some of them is indicated. It is also pointed out that in the domain of bipedal walk there are still notions that are not clearly defined and their meanings differentiated in some related branches of science and engineering. One of the examples is dynamic balance and stability, which are often used interchangeably.


Robotica ◽  
2018 ◽  
Vol 37 (1) ◽  
pp. 109-140 ◽  
Author(s):  
V. Janardhan ◽  
R. Prasanth Kumar

SUMMARYDitch crossing is one of the essential capabilities required for a biped robot in disaster management and search and rescue operations. Present work focuses on crossing a wide ditch with landing uncertainties by an under-actuated planar biped robot with five degrees of freedom. We consider a ditch as wide for a robot when the ankle to ankle stretch required to cross it is at least equal to the leg length of the robot. Since locomotion in uncertain environments requires real-time planning, in this paper, we present a new approach for generating real-time joint trajectories using control constraints not explicitly dependent on time, considering impact, dynamic balance, and friction. As part of the approach, we introduce a novel concept called the point of feasibility for bringing the biped robot to complete rest at the end of ditch crossing. We present a study on the influence of initial posture on landing impact and net energy consumption. Through simulations, we found the best initial postures to efficiently cross a wide ditch of width 1.05 m, with less impact and without singularities. Finally, we demonstrate the advantage of the proposed approach to cross a wide ditch when the surface friction is not same on both sides of the ditch.


Author(s):  
M. Alizadeh ◽  
C. Ratanasawanya ◽  
M. Mehrandezh ◽  
R. Paranjape

A vision-based servoing technique is proposed for a 2 degrees-of-freedom (dof) model helicopter equipped with a monocular vision system. In general, these techniques can be categorized as image- and position-based, where the task error is defined in the image plane in the former and in the physical space in the latter. The 2-dof model helicopter requires a configuration-dependent feed-forward control to compensate for gravitational forces when servoing on a ground target. Therefore, a position-based visual servoing deems more appropriate for precision control. Image information collected from a ground object, with known geometry a priori, is used to calculate the desired pose of the camera and correspondingly the desired joint angles of the model helicopter. To assure a smooth servoing, the task error is parameterized, using the information obtained from the linearaized image Jacobian, and time scaled to form a moving reference trajectory. At the higher level, a Linear Quadratic Regulator (LQR), augmented with a feed-forward term and an integrator, is used to track this trajectory. The discretization of the reference trajectory is achieved by an error-clamping strategy for optimal performance. The proposed technique was tested on a 2-dof model helicopter capable of pitch and yaw maneuvers carrying a light-weight off-the-shelf video camera. The test results show that the optimized controller can servo the model helicopter to a hovering pose for an image acquisition rate of as low as 2 frames per second.


Author(s):  
Claudio Urrea ◽  
Héctor Araya

The design and implementation stages of a redundant robotized manipulator with six Degrees Of Freedom (DOF), controlled with visual feedback by means of computational software, is presented. The various disciplines involved in the design and implementation of the manipulator robot are highlighted in their electric as well as mechanical aspects. Then, the kinematics equations that govern the position and orientation of each link of the manipulator robot are determined. The programming of an artificial vision system and of an interface that control the manipulator robot is designed and implemented. Likewise, the type of position control applied to each joint is explained, making a distinction according to the assigned task. Finally, functional mechanical and electric tests to validate the correct operation of each of the systems of the manipulator robot and the whole robotized system are carried out.


Author(s):  
Jian Hong Mei ◽  
Mohd Rizal Arshad

In this chapter, the authors address main issues of Navigation, Guidance, and Control (NGC) and vision system of Autonomous Surface Vessels (ASV). These issues compose research problems and related research findings in recent years. Related research results are reviewed first; then the hardware and subsystem of ASVs is introduced. For the typical rudder-propeller, three degrees of freedom horizontal underactuated model is presented. Visual ASV is applied more and more in complex and unknown environment with increasing demand of obstacles avoidance. Two examples of visual applications are demonstrated. One is riverbank identification using color segmentation and Hough Transform; the other is bridge detection using optical flow.


2019 ◽  
Vol 9 (22) ◽  
pp. 4921 ◽  
Author(s):  
Chen ◽  
Wu ◽  
Liu ◽  
Wang

Time-of-flight (ToF)-based 3-D target localization is a very challenging topic because of the pseudo-targets introduced by ToF measurement errors in traditional ToF-based methods. Although the influence of errors in ToF measurement can be reduced by the probability-based ToF method, the accuracy of localization is not very high. This paper proposes a new 3-D target localization method, Iterative Maximum Weighted Likelihood Estimation (IMWLE), that takes into account the spatial distribution of pseudo-targets. In our method, each pseudo-target is initially assigned an equal weight. At each iteration, Maximum Weighted Likelihood Estimation (MWLE) is adopted to fit a Gaussian distribution to all pseudo-target positions and assign new weight factors to them. The weight factors of the pseudo-targets, which are far from the target, are reduced to minimize their influence on localization. Therefore, IMWLE can reduce the influence of pseudo-targets that are far from the target and improve the accuracy of localization. The experiments were carried out in a water tank to test the performance of the IMWLE method. Results revealed that the estimated target area can be narrowed down to the target using IMWLE and a point estimate of target location can also be obtained, which shows that IMWLE has a higher degree of accuracy than the probability-based ToF method.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jian Xu ◽  
Pengfei Bi ◽  
Xue Du ◽  
Juan Li ◽  
Tianhao Jiang

This paper studies an advanced intelligent recognition method of underwater target based on unmanned underwater vehicle (UUV) vision system. This method is called kernel two-dimensional nonnegative matrix factorization (K2DNMF) which can further improve underwater operation capability of the UUV vision system. Our contributions can be summarized as follows: (1) K2DNMF intends to use the kernel method for the matrix factorization both on the column and row directions of the two-dimensional image data in order to transform the original low-dimensional space with nonlinearity into a higher dimensional space with linearity; (2) In the K2DNMF method, a good subspace approximation to the original data can be obtained by the orthogonal constraint on column basis matrix and row basis matrix; (3) The column basis matrix and row basis matrix can extract the feature information of underwater target images, and an effective classifier is designed to perform underwater target recognition; (4) A series of related experiments were performed on three sets of test samples collected by the UUV vision system, the experimental results demonstrate that K2DNMF has higher overall target detection accuracy than the traditional underwater target recognition methods.


Robotics ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 69 ◽  
Author(s):  
Evgeny Nuger ◽  
Beno Benhabib

A novel methodology is proposed herein to estimate the three-dimensional (3D) surface shape of unknown, markerless deforming objects through a modular multi-camera vision system. The methodology is a generalized formal approach to shape estimation for a priori unknown objects. Accurate shape estimation is accomplished through a robust, adaptive particle filtering process. The estimation process yields a set of surface meshes representing the expected deformation of the target object. The methodology is based on the use of a multi-camera system, with a variable number of cameras, and range of object motions. The numerous simulations and experiments presented herein demonstrate the proposed methodology’s ability to accurately estimate the surface deformation of unknown objects, as well as its robustness to object loss under self-occlusion, and varying motion dynamics.


2019 ◽  
Vol 256 ◽  
pp. 02005
Author(s):  
Xukui Hou ◽  
Ende Wang ◽  
Hui Cao ◽  
Yalong Zhu ◽  
Kai Qi

The uneven mass distribution of gyro rotors results in vibration, rotation and drift of gyro rotors, which seriously affect the performance index and life of gyro rotors. However, because there is no rigid connection between the rotary shaft and the shell of the gyro rotor, the dynamic balancing machine can only balance the vibration component of the single braced frame gyroscope rotor, and can’t measure the gyro rotor’s rotation component. By analyzing the influence of uneven rotor mass distribution on the gyro rotor performance, a method of eliminating two rotational degrees of freedom of the gimbal in gyro rotor by mandrel is proposed, which makes the dynamic balancing machine directly measure the vibration component and the moving component of the gyroscope rotor, and simplifies the dynamic balancing debugging process.


Sign in / Sign up

Export Citation Format

Share Document