scholarly journals The Effect of Migratory Beekeeping on the Infestation Rate of Parasites in Honey Bee (Apis mellifera) Colonies and on Their Genetic Variability

2020 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Laura Jara ◽  
Carlos Ruiz ◽  
Raquel Martín-Hernández ◽  
Irene Muñoz ◽  
Mariano Higes ◽  
...  

Migratory beekeeping is a widely extended practice aimed at increasing the yield of products and pollination services of honey bee colonies. However, it represents a stress factor, as it facilitates the dissemination of diseases and may compromise the genetic identity of the colonies involved. To analyze the extent of these effects, pathogens infestation rate and genetic composition were monitored in a field experiment comparing stationary and migratory colonies sharing the same environmental conditions but differing in management (stationary vs. migratory) and genetic background. We studied the pathogens infestation rate (Varroa destructor, Nosema spp., and Deformed Wing Virus (DWV)) at four different times: before migratory operation, two weeks later, at the end of the migratory period, and two weeks after the return of the migratory hives. An increased incidence of V. destructor and Nosema ceranae and a lower DWV viral load were found in migratory colonies. Temporary changes in genetic diversity were detected regardless of colony type, suggesting that stressors other than management affect the genetic diversity of the colonies. Our study demonstrates that migratory practices have variable effects on the health and genetic diversity of honey bee colonies, which should be taken into account for the development of sustainable beekeeping.

2015 ◽  
Vol 59 (1) ◽  
pp. 59-73 ◽  
Author(s):  
Antoine Clermont ◽  
Matias Pasquali ◽  
Michael Eickermann ◽  
François Kraus ◽  
Lucien Hoffmann ◽  
...  

Abstract Twenty managed honey bee colonies, split between 5 apiaries with 4 hives each, were monitored between the summer of 2011 and spring of 2013. Living bees were sampled in July 2011, July 2012, and August 2012. Twenty-five, medium-aged bees, free of varroa mites, were pooled per colony and date, to form one sample. Unlike in France and Belgium, Chronic Bee Paralysis Virus (CBPV) has not been found in Luxembourg. Slow Bee Paralysis Virus (SBPV) and Israeli Acute Paralysis Virus (IAPV) levels were below detection limits. Traces of Kashmir Bee Virus (KBV) were amplified. Black Queen Cell Virus (BQCV), Varroa destructor Virus-1 (VDV-1), and SacBrood Virus (SBV) were detected in all samples and are reported from Luxembourg for the first time. Varroa destructor Macula- Like Virus (VdMLV), Deformed Wing Virus (DWV), and Acute Bee Paralysis Virus (ABPV) were detected at all locations, and in most but not all samples. There was a significant increase in VDV-1 and DWV levels within the observation period. A principal component analysis was unable to separate the bees of colonies that survived the following winter from bees that died, based on their virus contents in summer. The number of dead varroa mites found below colonies was elevated in colonies that died in the following winter. Significant positive relationships were found between the log-transformed virus levels of the bees and the log-transformed number of mites found below the colonies per week, for VDV-1 and DWV. Sacbrood virus levels were independent of varroa levels, suggesting a neutral or competitive relationship between this virus and varroa.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 969
Author(s):  
Isobel Grindrod ◽  
Jessica L. Kevill ◽  
Ethel M. Villalobos ◽  
Declan C. Schroeder ◽  
Stephen John Martin

The combination of Deformed wing virus (DWV) and Varroa destructor is arguably one of the greatest threats currently facing western honey bees, Apis mellifera. Varroa’s association with DWV has decreased viral diversity and increased loads of DWV within honey bee populations. Nowhere has this been better studied than in Hawaii, where the arrival of Varroa progressively led to the dominance of the single master variant (DWV-A) on both mite-infested Hawaiian Islands of Oahu and Big Island. Now, exactly 10 years following the original study, we find that the DWV population has changed once again, with variants containing the RdRp coding sequence pertaining to the master variant B beginning to co-dominate alongside variants with the DWV-A RdRp sequence on the mite-infested islands of Oahu and Big Island. In speculation, based on other studies, it appears this could represent a stage in the journey towards the complete dominance of DWV-B, a variant that appears better adapted to be transmitted within honey bee colonies.


2019 ◽  
Vol 10 ◽  
Author(s):  
Sandra Barroso-Arévalo ◽  
Eduardo Fernández-Carrión ◽  
Joaquín Goyache ◽  
Fernando Molero ◽  
Francisco Puerta ◽  
...  

2010 ◽  
Vol 142 (6) ◽  
pp. 584-588 ◽  
Author(s):  
Geoffrey R. Williams ◽  
Krista Head ◽  
Karen L. Burgher-MacLellan ◽  
Richard E.L. Rogers ◽  
Dave Shutler

AbstractWestern honey bees, Apis mellifera L. (Hymenoptera: Apidae), occur in nearly every region inhabited by man because they provide valuable honey, wax, and pollination services. Many commercial honey bee operations are plagued by economically important parasites; however, beekeepers on the island of Newfoundland, Canada, are in a unique position because of the province of Newfoundland and Labrador’s strict import regulations and geographic isolation. We surveyed about 25% of the island’s approximately 100 managed honey bee colonies. The parasitic mites Varroa destructor Anderson and Trueman (Acari: Varroidae) and Acarapis woodi (Rennie) (Acari: Tarsonemidae) were not detected, whereas Nosema spp. microsporidia were detected in two of four beekeeping operations and in 11 of 23 (48%) colonies (intensity = 482 609 ± 1199 489 (mean ± SD); median intensity = 0). Because V. destructor and A. woodi are important pests that typically require chemical treatments, beekeepers on the island of Newfoundland may be uniquely positioned to market organic honey bee products from colonies that could also be a source of mite-naïve bees for research.


2021 ◽  
Vol 9 (4) ◽  
pp. 845
Author(s):  
Loreley Castelli ◽  
Sofía Balbuena ◽  
Belén Branchiccela ◽  
Pablo Zunino ◽  
Joanito Liberti ◽  
...  

Glyphosate is the most used pesticide around the world. Although different studies have evidenced its negative effect on honey bees, including detrimental impacts on behavior, cognitive, sensory and developmental abilities, its use continues to grow. Recent studies have shown that it also alters the composition of the honey bee gut microbiota. In this study we explored the impact of chronic exposure to sublethal doses of glyphosate on the honey bee gut microbiota and its effects on the immune response, infection by Nosema ceranae and Deformed wing virus (DWV) and honey bee survival. Glyphosate combined with N. ceranae infection altered the structure and composition of the honey bee gut microbiota, for example by decreasing the relative abundance of the core members Snodgrassella alvi and Lactobacillus apis. Glyphosate increased the expression of some immune genes, possibly representing a physiological response to mitigate its negative effects. However, this response was not sufficient to maintain honey bee health, as glyphosate promoted the replication of DWV and decreased the expression of vitellogenin, which were accompanied by a reduced life span. Infection by N. ceranae also alters honey bee immunity although no synergistic effect with glyphosate was observed. These results corroborate previous findings suggesting deleterious effects of widespread use of glyphosate on honey bee health, and they contribute to elucidate the physiological mechanisms underlying a global decline of pollination services.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 641
Author(s):  
Julio Chávez-Galarza ◽  
Ruth López-Montañez ◽  
Alejandra Jiménez ◽  
Rubén Ferro-Mauricio ◽  
Juan Oré ◽  
...  

Mitochondrial DNA variations of Peruvian honey bee populations were surveyed by using the tRNAleu-cox2 intergenic region. Only two studies have characterized these populations, indicating the presence of Africanized honey bee colonies in different regions of Peru and varied levels of Africanization, but the current status of its genetic diversity is unknown. A total of 512 honey bee colonies were sampled from three regions to characterize them. Our results revealed the presence of European and African haplotypes: the African haplotypes identified belong to sub-lineage AI (13) and sub-lineage AIII (03), and the European haplotypes to lineages C (06) and M (02). Of 24 haplotypes identified, 15 new sequences are reported here (11 sub-lineage AI, 2 sub-lineage AIII, and 2 lineage M). Peruvian honey bee populations presented a higher proportion from African than European haplotypes. High proportions of African haplotype were reported for Piura and Junín, unlike Lima, which showed more European haplotypes from lineage C. Few colonies belonging to lineage M would represent accidental purchase or traces of the introduction into Peru in the 19th century.


PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e36285 ◽  
Author(s):  
Coby van Dooremalen ◽  
Lonne Gerritsen ◽  
Bram Cornelissen ◽  
Jozef J. M. van der Steen ◽  
Frank van Langevelde ◽  
...  

Author(s):  
J. L. Kevill ◽  
K. C. Stainton ◽  
D. C. Schroeder ◽  
S. J. Martin

AbstractDeformed wing virus (DWV) has been linked to the global decline of honey bees. DWV exists as three master variants (DWV-A, DWV-B, and DWV-C), each with differing outcomes for the honey bee host. Research in the USA showed a shift from DWV-A to DWV-B between 2010 to 2016 in honey bee colonies. Likewise, in the UK, a small study in 2007 found only DWV-A, whereas in 2016, DWV-B was the most prevalent variant. This suggests a shift from DWV-A to DWV-B might have occurred in the UK between 2007 and 2016. To investigate this further, data from samples collected in 2009/10 (n = 46) were compared to existing data from 2016 (n = 42). These samples also allowed a comparison of DWV variants between Varroa-untreated (feral) and Varroa-treated (managed) colonies. The results revealed that, in the UK, DWV-A was far more prevalent in 2009/10 (87%) than in 2016 (43%). In contrast, DWV-B was less prevalent in 2009/10 (76%) than in 2016 (93%). Regardless if colonies had been treated for Varroa (managed) or not (feral), the same trend from DWV-A to DWV-B occurred. Overall, the results reveal a decrease in DWV-A and an increase in DWV-B in UK colonies.


2018 ◽  
pp. 83-87
Author(s):  
Marianna Takács ◽  
János Oláh

An apiary trial was conducted in 2016 August to October in Szabolcs-Szatmár-Bereg County, Nyírmada to evaluate the influence of queen’s age on the Varroa destructor-burden in the treatment colonies. Sixty colonies of bees belonging to the subspecies Apis mellifera carnica pannonica in Hunor loading hives (with 10 frames in the brood chamber/deep super) were used. The colonies were treated with amitraz and the organophosphate pesticide coumaphos active ingredients. The amitraz treatment includes 6 weeks. The coumaphos treatment with Destructor 3.2% can be used for both diagnosis and treatment of Varroasis. For diagnosis, one treatment is sufficient. For control, two treatments at an interval of seven days are required. The colonies were grouped by the age of the queen: 20 colonies with one-year-old, 20 colonies with two-year-old and 20 colonies with three-year-old queen. The mite mortality of different groups was compared. The number of fallen mites was counted at the white bottom boards. The examination of spring growth of honey bee colonies has become necessary due to the judgement of efficiency of closing treatment. The data was recorded seven times between 16th March 2017 and 19th May 2017. Data on fallen mites were subjected to one-way analysis of variance (ANOVA) and Post-Hoc Tukey-test. Statistical analysis was performed using the software of IBM SPSS (version 21.). During the first two weeks after treatments, the number of fallen mites was significantly higher in the older queen’s colonies (Year 2014). The total mite mortality after amitraz treatment in the younger queen’s colonies was lower (P<0.05) compared to the three-year-old queen’s colonies. According to Takács and Oláh (2016) although the mitemortality tendency, after the coumaphos (closing) treatment in colonies which have Year 2014 queen showed the highest rate, considering the mite-burden the colonies belongs to the average infected category. The colonial maintenance ability of three-year-old queen cannot be judged based on the influencing effect on the mite-burden. The importance of the replacement of the queen was judged by the combined effect of several factors. During the spring-growth study (16th March–19th May) was experienced in the three-year-old queen’s colonies the number of brood frames significantly lower compared to the one- and two-year-old queen’s colonies. In the study of 17th April and 19th May each of the three queen-year-groups were varied. Therefore in the beekeeping season at different times were determined the colonial maintenance ability of queens by more factors: efficiency of closing treatment in early spring, the spring-growth of bee colonies, the time of population shift (in current study, this time was identical in each queen-year), honey production (from black locust).


Sign in / Sign up

Export Citation Format

Share Document