scholarly journals Time-Resolved Transcriptional Profiling of Epithelial Cells Infected by Intracellular Acinetobacter baumannii

2021 ◽  
Vol 9 (2) ◽  
pp. 354
Author(s):  
Nuria Crua Asensio ◽  
Javier Macho Rendón ◽  
Marc Torrent Burgas

The rise in the number of antibiotic-resistant bacteria has become a serious threat to health, making it important to identify, characterize and optimize new molecules to help us to overcome the infections they cause. It is well known that Acinetobacter baumannii has a significant capacity to evade the actions of antibacterial drugs, leading to its emergence as one of the bacteria responsible for hospital and community-acquired infections. Nonetheless, how this pathogen infects and survives inside the host cell is unclear. In this study, we analyze the time-resolved transcriptional profile changes observed in human epithelial HeLa cells after infection by A. baumannii, demonstrating how it survives in host cells and starts to replicate 4 h post infection. These findings were achieved by sequencing RNA to obtain a set of Differentially Expressed Genes (DEGs) to understand how bacteria alter the host cells’ environment for their own benefit. We also determine common features observed in this set of genes and identify the protein–protein networks that reveal highly-interacted proteins. The combination of these findings paves the way for the discovery of new antimicrobial candidates for the treatment of multidrug-resistant bacteria.

2021 ◽  
Vol 2021 ◽  
pp. 1-30
Author(s):  
Najwan Jubair ◽  
Mogana Rajagopal ◽  
Sasikala Chinnappan ◽  
Norhayati Binti Abdullah ◽  
Ayesha Fatima

Microbial resistance has progressed rapidly and is becoming the leading cause of death globally. The spread of antibiotic-resistant microorganisms has been a significant threat to the successful therapy against microbial infections. Scientists have become more concerned about the possibility of a return to the pre-antibiotic era. Thus, searching for alternatives to fight microorganisms has become a necessity. Some bacteria are naturally resistant to antibiotics, while others acquire resistance mainly by the misuse of antibiotics and the emergence of new resistant variants through mutation. Since ancient times, plants represent the leading source of drugs and alternative medicine for fighting against diseases. Plants are rich sources of valuable secondary metabolites, such as alkaloids, quinones, tannins, terpenoids, flavonoids, and polyphenols. Many studies focus on plant secondary metabolites as a potential source for antibiotic discovery. They have the required structural properties and can act by different mechanisms. This review analyses the antibiotic resistance strategies produced by multidrug-resistant bacteria and explores the phytochemicals from different classes with documented antimicrobial action against resistant bacteria, either alone or in combination with traditional antibiotics.


2020 ◽  
Vol 8 (9) ◽  
pp. 1425
Author(s):  
Lara Pérez-Etayo ◽  
David González ◽  
José Leiva ◽  
Ana Isabel Vitas

Due to the global progress of antimicrobial resistance, the World Health Organization (WHO) published the list of the antibiotic-resistant “priority pathogens” in order to promote research and development of new antibiotics to the families of bacteria that cause severe and often deadly infections. In the framework of the One Health approach, the surveillance of these pathogens in different environments should be implemented in order to analyze their spread and the potential risk of transmission of antibiotic resistances by food and water. Therefore, the objective of this work was to determine the presence of high and critical priority pathogens included in the aforementioned list in different aquatic environments in the POCTEFA area (North Spain–South France). In addition to these pathogens, detection of colistin-resistant Enterobacteriaceae was included due its relevance as being the antibiotic of choice to treat infections caused by multidrug resistant bacteria (MDR). From the total of 80 analyzed samples, 100% of the wastewater treatment plants (WWTPs) and collectors (from hospitals and slaughterhouses) and 96.4% of the rivers, carried antibiotic resistant bacteria (ARB) against the tested antibiotics. Fifty-five (17.7%) of the isolates were identified as target microorganisms (high and critical priority pathogens of WHO list) and 58.2% (n = 32) of them came from WWTPs and collectors. Phenotypic and genotypic characterization showed that 96.4% were MDR and resistance to penicillins/cephalosporins was the most widespread. The presence of bla genes, KPC-type carbapenemases, mcr-1 and vanB genes has been confirmed. In summary, the presence of clinically relevant MDR bacteria in the studied aquatic environments demonstrates the need to improve surveillance and treatments of wastewaters from slaughterhouses, hospitals and WWTPs, in order to minimize the dispersion of resistance through the effluents of these areas.


Chemotherapy ◽  
2010 ◽  
Vol 56 (4) ◽  
pp. 275-279 ◽  
Author(s):  
Elvira Garza-González ◽  
Jorge Martín Llaca-Díaz ◽  
Francisco Javier Bosques-Padilla ◽  
Gloria M. González

2020 ◽  
Author(s):  
Ai-Min Jiang ◽  
Xin Shi ◽  
Na Liu ◽  
Huan Gao ◽  
Meng-Di Ren ◽  
...  

Abstract Background: Bacterial infections are the most frequent complications in patients with malignancy, and the epidemiology of nosocomial infections among cancer patients has changed over time. This study aimed to evaluate characteristics, antibiotic-resistant patterns, and prognosis of nosocomial infections caused by multidrug-resistant bacteria (MDR) in cancer patients. Methods: This retrospectively analyzed cancer patients with MDR bacteria caused nosocomial infections from August 2013 to May 2019 and was conducted to explore the risk factors, clinical features, outcomes, and antibiotic-resistant patterns of these infections. Results: Overall, 257 cancer patients developed nosocomial infections caused by MDR bacteria. Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae was the most frequently isolated multidrug-resistant Gram-negative bacteria (MDRGNB), followed by ESBL-producing Klebsiella pneumonia, and Acinetobacter baumannii. Cancer patients with liver disease, received intrapleural/abdominal infusion within 30 days, length of hospitalization, hemoglobin, and albumin were independent factors for 30-day mortality in the study population. The isolated MDR bacteria were highly sensitive to amikacin, meropenem, imipenem, tigecycline, and piperacillin/tazobactam. Conclusions: Cancer patients with prolonged hospitalization was an independent predictor of a favorable outcome. However, cancer patients with liver disease, received intrapleural/abdominal infusion within 30 days, anemia, and hypoproteinemia were independent risk factors of 30-day mortality.


Author(s):  
Ádám Kerek ◽  
Ágnes Sterczer ◽  
Zoltán Somogyi ◽  
Dóra Kovács ◽  
Ákos Jerzsele

AbstractMultidrug-resistant bacteria can cause severe nosocomial infections in both human and veterinary clinics. The aim of this study was to investigate the presence and antibiotic susceptibility of Enterococcus, Staphylococcus and Pseudomonas strains at four small animal clinics of Hungary in 2018, as these bacteria can reliably represent the level of antimicrobial resistance in the investigated environment. A total of 177 Staphylococcus colonies were found, including 22 Staphylococcus pseudintermedius and 13 Staphylococcus aureus. As regards enterococci, 9 Enterococcus faecium, 2 E. faecalis and further 286 Enterococcus strains were isolated. The number of Pseudomonas aeruginosa isolates (n = 34) was considered too low for relevant susceptibility testing. Among staphylococci, the highest resistance was found to sulphamethoxazole (82.9%), penicillin (65.7%) and erythromycin (54.3%), while in the case of enterococci, resistance to norfloxacin and rifampicin was the most common, with 25.5% of the strains being resistant to both antibiotics. Ten methicillin-resistant S. pseudintermedius (MRSP) and six vancomycin-resistant Enterococcus (VRE) strains could be identified. Only 5.7% of the Staphylococcus isolates were susceptible to all tested agents, while this ratio was 36.2% among enterococci. The results of this study have revealed a high prevalence of antibiotic-resistant bacteria in Hungarian small animal clinics, which highlights the importance of regular disinfection processes and stringent hygiene measures in veterinary clinics.


2021 ◽  
Author(s):  
Anke Breine ◽  
Megane Van Gysel ◽  
Mathias Elsocht ◽  
Clemence Whiteway ◽  
Chantal Philippe ◽  
...  

Synopsis Objectives: The spread of antibiotic resistant bacteria is an important threat for human healthcare. Acinetobacter baumannii bacteria impose one of the major issues, as multidrug- to pandrug-resistant strains have been found, rendering some infections untreatable. In addition, A. baumannii is a champion in surviving in harsh environments, being capable of resisting to disinfectants and to persist prolonged periods of desiccation. Due to the high degree of variability found in A. baumannii isolates, the search for new antibacterials is challenging. Here, we screened a compound library to identify compounds active against recent isolates of A. baumannii bacteria. Methods: A repurposing drug screen was undertaken to identify A. baumannii growth inhibitors. One hit was further characterized by determining its IC50 and testing its activity on 43 recent clinical A. baumannii isolates, amongst which 40 are extensively drug- and carbapenem-resistant strains. Results: The repurposing screen led to the identification of a harmine-derived compound, called HDC1, which proved to have bactericidal activity on the multidrug-resistant AB5075-VUB reference strain with an IC50 of 48.23 [mu]M. In addition, HDC1 impairs growth of all 43 recent clinical A. baumannii isolates. Conclusions: We identified a compound with inhibitory activity on all tested, extensively drug-resistant clinical A. baumannii isolates.


mSphere ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Xavier Vila-Farres ◽  
John Chu ◽  
Melinda A. Ternei ◽  
Christophe Lemetre ◽  
Steven Park ◽  
...  

Natural product-inspired antibiotics have saved millions of lives and played a critical role in modern medicine. However, the emergence of drug-resistant pathogens is outpacing the rate at which new clinically useful antibiotics are being discovered. The lack of a means to combat infections caused by multidrug-resistant (MDR) Acinetobacter baumannii is of particular concern. The sharp increase in cases of MDR A. baumannii infections in recent years prompted the CDC (https://www.cdc.gov/drugresistance/biggest_threats.html) and WHO (http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/) to list this pathogen as a “serious threat” and “critical pathogen,” respectively. Here we report a new antibiotic, paenimucillin C, active against Gram-negative bacterial pathogens, including many clinical isolates of MDR A. baumannii strains. Mechanistic studies point to membrane disruption leading to leakage of intracellular contents as its antibacterial mode of action. Paenimucillin C sterilizes MDR A. baumannii infections in a rat cutaneous wound model with no sign of rebound infection, providing a potential new therapeutic regimen.


2015 ◽  
Vol 80 (6) ◽  
pp. 819-826 ◽  
Author(s):  
Jelena Milenkovic ◽  
Jasna Hrenovic ◽  
Ivana Goic-Barisic ◽  
Milos Tomic ◽  
Nevenka Rajic

The multidrug resistant bacteria Acinetobacter baumannii cause serious hospital infections. Commercial poly(vinyl chloride) (PVC) used for endotracheal tubes was modified in order to obtain the composite with antibacterial effect towards clinical isolate of A. baumannii ST145. The composites were prepared by addition of different amounts of copper-containing zeolite tuff (CuZ) and by successive impregnation with D-Tyrosine (D-Tyr) solution. The composites which were obtained by addition of CuZ (CuZ-PVC) only did not exhibit antibacterial effect. The impregnation of the CuZ-PVC by D-Tyr resulted in an antibacterial effect which is explained by a synergistic effect of CuZ and D-Tyr. Rheological tests confirmed that the modification of PVC by CuZ does not affect its processability and reformability.


Sign in / Sign up

Export Citation Format

Share Document