scholarly journals In Vitro Fermentation Characteristics and Fiber-Degrading Enzyme Kinetics of Cellulose, Arabinoxylan, β-Glucan and Glucomannan by Pig Fecal Microbiota

2021 ◽  
Vol 9 (5) ◽  
pp. 1071
Author(s):  
Yu Bai ◽  
Xingjian Zhou ◽  
Na Li ◽  
Jinbiao Zhao ◽  
Hao Ye ◽  
...  

Non-digestible polysaccharides are of great significance to human and animal intestinal health. Cellulose, arabinoxylan, β−glucan and glucomannan were selected in the present study to investigate the fermentation characteristics and fiber-degrading enzyme kinetics by inoculating pig fecal microbiota in vitro. Our results showed that fermentation of arabinoxylan and β-glucan produced the highest amount of acetate and lactate, respectively. The abundance of Prevotella_9 was the highest in β-glucan group and positively correlated with lactate and acetate. Glucomannan fermentation produced the highest amount of butyrate, and the abundance of Lachnospiraceae_XPB_1014_group and Bacteroides were the lowest. A significant negative correlation was found between Lachnospiraceae_XPB_1014_group, Bacteroides and butyrate. Exo-β-1,4-xylanase had the highest activity at 24 h during arabinoxylan fermentation. The activity of β-glucosidase and β-mannosidase at 36 h were higher than those at 15 h in the glucomannan group. The abundance of Prevotella_9 was positively correlated with β-glucosidase while Lachnospiraceae_XPB_1014_group and Bacteroides were negatively correlated with β-xylosidase. Our findings demonstrated the β-glucan and arabinoxylan promote proliferation of Prevotella_9, with the preference to secret β-glucosidase, β-mannosidase and the potential to produce lactate and acetate. Butyrate production can be improved by inhibiting the proliferation of Lachnospiraceae_XPB_1014_group and Bacteroides, which have the lack of potential to secret β-xylosidase.

2008 ◽  
Vol 86 (11) ◽  
pp. 2979-2989 ◽  
Author(s):  
G. Bosch ◽  
W. F. Pellikaan ◽  
P. G. P. Rutten ◽  
A. F. B. van der Poel ◽  
M. W. A. Verstegen ◽  
...  

LWT ◽  
2018 ◽  
Vol 96 ◽  
pp. 627-635 ◽  
Author(s):  
Ruiqiu Zhao ◽  
Wenjian Yang ◽  
Fei Pei ◽  
Liyan Zhao ◽  
Qiuhui Hu

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 114-115
Author(s):  
Cienna J Boss ◽  
Jung Wook Lee ◽  
Rob Patterson ◽  
Tofuko A Woyengo

Abstract A study was conducted to determine effects of pretreating and supplementing soybean hulls with multi-enzyme on porcine in vitro digestion and fermentation characteristics. Treatments were untreated and heat-pretreated (160 °C and 70 psi for 20 min) soybean hulls without or with multi-enzyme in a 2 × 2 factorial arrangement. The multi-enzyme supplied 2,800 U of cellulase, 1,800 U of pectinase, 400 U of mannanase, 1,000 U of xylanase, 600 U of glucanase, and 200 U of protease/kilogram of feedstuff. Feedstuffs were subjected to in vitro digestion with porcine pepsin and pancreatin, followed by in vitro fermentation for 72 h. Accumulated gas production was recorded and modeled to estimate kinetics of gas production. On DM basis, untreated and pretreated soybean hulls contained 10.4 and 10.6% CP, and 63.2 and 49.5% ADF, respectively. Pretreatment and multi-enzyme supplementation did not interact on in vitro digestibility of DM (IVDDM). Untreated and pretreated soybean hulls did not differ in IVDDM (24.8 vs. 25.7%). Multi-enzyme increased (P < 0.05) IVDDM of soybean hulls by a mean of 45.5%. Pretreatment and multi-enzyme unaffected total gas production. Pretreatment and multi-enzyme interacted (P < 0.05) on fractional rate of degradation such that the fractional rate of degradation for pretreated soybean hulls was greater (P < 0.05) than that of untreated soybean hulls when soybean hulls were supplemented with multi-enzyme (0.045 vs. 0.062 h-1), but not when soybean hulls were unsupplemented with multi-enzyme (0.053 vs. 0.059 h-1). In conclusion, multi-enzyme supplementation increased IVDDM, implying that the multi-enzyme used in the study can be used to enhance utilization of soybean hulls. Heat pretreatment increased the rate of fermentation of multi-enzyme-supplemented soybean hulls, implying that the rate of fermentation of soybean hulls in the hindgut of pigs can be enhanced by a combination of heat pretreatment and multi-enzyme supplementation.


2019 ◽  
Vol 20 (8) ◽  
pp. 1925 ◽  
Author(s):  
Tsitko ◽  
Wiik-Miettinen ◽  
Mattila ◽  
Rosa-Sibakov ◽  
Maukonen ◽  
...  

The development of prebiotic fibers requires fast high-throughput screening of their effects on the gut microbiota. We demonstrated the applicability of a mictotiter plate in the in vitro fermentation models for the screening of potentially-prebiotic dietary fibers. The effects of seven rye bran-, oat- and linseed-derived fiber preparations on the human fecal microbiota composition and short-chain fatty acid production were studied. The model was also used to study whether fibers can alleviate the harmful effects of amoxicillin-clavulanate on the microbiota. The antibiotic induced a shift in the bacterial community in the absence of fibers by decreasing the relative amounts of Bifidobacteriaceae, Bacteroidaceae, Prevotellaceae, Lachnospiraceae and Ruminococcaceae, and increasing proteobacterial Sutterilaceae levels from 1% to 11% of the total microbiota. The fermentation of rye bran, enzymatically treated rye bran, its insoluble fraction, soluble oat fiber and a mixture of rye fiber:soluble oat fiber:linseed resulted in a significant increase in butyrate production and a bifidogenic effect in the absence of the antibiotic. These fibers were also able to counteract the negative effects of the antibiotic and prevent the decrease in the relative amount of bifidobacteria. Insoluble and soluble rye bran fractions and soluble oat fiber were the best for controlling the level of proteobacteria at the level below 2%.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1802 ◽  
Author(s):  
Natalie Ahlborn ◽  
Wayne Young ◽  
Jane Mullaney ◽  
Linda M. Samuelsson

While human milk is the optimal food for infants, formulas that contain ruminant milk can have an important role where breastfeeding is not possible. In this regard, cow milk is most commonly used. However, recent years have brought interest in other ruminant milk. While many similarities exist between ruminant milk, there are likely enough compositional differences to promote different effects in the infant. This may include effects on different bacteria in the large bowel, leading to different metabolites in the gut. In this study sheep and cow milk were digested using an in vitro infant digestive model, followed by fecal fermentation using cultures inoculated with fecal material from two infants of one month and five months of age. The effects of the cow and sheep milk on the fecal microbiota, short-chain fatty acids (SCFA), and other metabolites were investigated. Significant differences in microbial, SCFA, and metabolite composition were observed between fermentation of sheep and cow milk using fecal inoculum from a one-month-old infant, but comparatively minimal differences using fecal inoculum from a five-month-old infant. These results show that sheep milk and cow milk can have differential effects on the gut microbiota, while demonstrating the individuality of the gut microbiome.


2017 ◽  
Vol 88 (10) ◽  
pp. 1547-1555 ◽  
Author(s):  
Juan P. Keim ◽  
Christian Alvarado-Gilis ◽  
Rodrigo A. Arias ◽  
Mónica Gandarillas ◽  
Jaime Cabanilla

2005 ◽  
Vol 123-124 ◽  
pp. 687-702 ◽  
Author(s):  
Yu Lan ◽  
Barbara A. Williams ◽  
Seerp Tamminga ◽  
Huug Boer ◽  
Antoon Akkermans ◽  
...  

2012 ◽  
Vol 60 (8) ◽  
pp. 2024-2032 ◽  
Author(s):  
Alejandra Cardelle-Cobas ◽  
Agustín Olano ◽  
Nieves Corzo ◽  
Mar Villamiel ◽  
Michelle Collins ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document