In vitro fermentation of six kinds of edible mushrooms and its effects on fecal microbiota composition

LWT ◽  
2018 ◽  
Vol 96 ◽  
pp. 627-635 ◽  
Author(s):  
Ruiqiu Zhao ◽  
Wenjian Yang ◽  
Fei Pei ◽  
Liyan Zhao ◽  
Qiuhui Hu
Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2806 ◽  
Author(s):  
Evdokia K. Mitsou ◽  
Georgia Saxami ◽  
Emmanuela Stamoulou ◽  
Evangelia Kerezoudi ◽  
Eirini Terzi ◽  
...  

Alterations of gut microbiota are evident during the aging process. Prebiotics may restore the gut microbial balance, with β-glucans emerging as prebiotic candidates. This study aimed to investigate the impact of edible mushrooms rich in β-glucans on the gut microbiota composition and metabolites by using in vitro static batch culture fermentations and fecal inocula from elderly donors (n = 8). Pleurotus ostreatus, P. eryngii, Hericium erinaceus and Cyclocybe cylindracea mushrooms derived from various substrates were examined. Gut microbiota composition (quantitative PCR (qPCR)) and short-chain fatty acids (SCFAs; gas chromatography (GC)) were determined during the 24-h fermentation. P. eryngii induced a strong lactogenic effect, while P. ostreatus and C. cylindracea induced a significant bifidogenic effect (p for all <0.05). Furthermore, P. eryngii produced on wheat straw and the prebiotic inulin had comparable Prebiotic Indexes, while P. eryngii produced on wheat straw/grape marc significantly increased the levels of tested butyrate producers. P. ostreatus, P. eryngii and C. cylindracea had similar trends in SCFA profile; H. erinaceus mushrooms were more diverse, especially in the production of propionate, butyrate and branched SCFAs. In conclusion, mushrooms rich in β-glucans may exert beneficial in vitro effects in gut microbiota and/or SCFAs production in elderly subjects.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 283-283
Author(s):  
Xiong Xia ◽  
Lingling Hu ◽  
Jian Peng

Abstract In vitro fermentation experiments with modified starch 1 (MS1), modified starch 2 (MS2), guar gum (GG), xanthan gum (XG), konjac flour (KF), wheat brain (WB), and inulin (I) were conducted for 48 h to investigate the effects on gilt gut microbiota. Fecal examples were obtained from three gilts; the fermentation kinetics parameters were analysed in Logistic-Exponential (LE) model such as the final asymptotic gas volume (Vf, ml/g), initial fractional rate of degradation at t-value=0 (FDR0, h-1), fractional rate of gas production at particular time (k, h-1) and half-time to asymptote (T1/2, h). Samples were collected after fermentation for short chain fatty acids (SCFAs) and 16S rDNA microbial analysis. MS1, MS2, and I had the highest Vf (P &lt; 0.01). The k of GG and I were significant higher (P &lt; 0.01). FDR0 of MS2, GG, and I were the lowest following KF, MS1, WB, and XG, successively (P &lt; 0.01). T1/2 of MS1, KF, WB, and GG were lower (P &lt; 0.01). MS1, MS2, and GG produced more acetate (P &lt; 0.05) and total SCFAs (P &lt; 0.01), and butyrate produced by MS2 was significant higher (P &lt; 0.01). The microbiota composition changed dramatically after fermentation, decreasing bacteria abundance and alpha-diversity (P &lt; 0.01). The relative abundance of phyla Firmicutes and Bacteroidetes decreased, while phyla Spirochaetes, Proteobacteria, Kiritimatiellaeota, and Fusobacteria were selectively promoted by DF. The LEfSe analysis showed Proteobacteria, Gammaproteobacteria, and Aeromonadales were enriched in MS1 treatment; Clostridiales, Clostridia, and Anaerosporobacter were enriched in MS2 treatment; Bacteroidales, Bacteroidia, and Bacteroidetes were enriched in GG treatment; Ruminococcaceae and Ruminococcaceae_UCG_013 were enriched in XG treatment; Lachnospiraceae, Lachnospiraceae_NK4A136_group, and Ruminiclostridium were enriched in KF treatment; Enterobacteriales, Enterobacteriaceae, and Lactobacillales, were enriched in I treatment. In conclusion, different type of DFs may play a specific role in gilt gut microbiota changing and composition.


2019 ◽  
Vol 20 (8) ◽  
pp. 1925 ◽  
Author(s):  
Tsitko ◽  
Wiik-Miettinen ◽  
Mattila ◽  
Rosa-Sibakov ◽  
Maukonen ◽  
...  

The development of prebiotic fibers requires fast high-throughput screening of their effects on the gut microbiota. We demonstrated the applicability of a mictotiter plate in the in vitro fermentation models for the screening of potentially-prebiotic dietary fibers. The effects of seven rye bran-, oat- and linseed-derived fiber preparations on the human fecal microbiota composition and short-chain fatty acid production were studied. The model was also used to study whether fibers can alleviate the harmful effects of amoxicillin-clavulanate on the microbiota. The antibiotic induced a shift in the bacterial community in the absence of fibers by decreasing the relative amounts of Bifidobacteriaceae, Bacteroidaceae, Prevotellaceae, Lachnospiraceae and Ruminococcaceae, and increasing proteobacterial Sutterilaceae levels from 1% to 11% of the total microbiota. The fermentation of rye bran, enzymatically treated rye bran, its insoluble fraction, soluble oat fiber and a mixture of rye fiber:soluble oat fiber:linseed resulted in a significant increase in butyrate production and a bifidogenic effect in the absence of the antibiotic. These fibers were also able to counteract the negative effects of the antibiotic and prevent the decrease in the relative amount of bifidobacteria. Insoluble and soluble rye bran fractions and soluble oat fiber were the best for controlling the level of proteobacteria at the level below 2%.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1802 ◽  
Author(s):  
Natalie Ahlborn ◽  
Wayne Young ◽  
Jane Mullaney ◽  
Linda M. Samuelsson

While human milk is the optimal food for infants, formulas that contain ruminant milk can have an important role where breastfeeding is not possible. In this regard, cow milk is most commonly used. However, recent years have brought interest in other ruminant milk. While many similarities exist between ruminant milk, there are likely enough compositional differences to promote different effects in the infant. This may include effects on different bacteria in the large bowel, leading to different metabolites in the gut. In this study sheep and cow milk were digested using an in vitro infant digestive model, followed by fecal fermentation using cultures inoculated with fecal material from two infants of one month and five months of age. The effects of the cow and sheep milk on the fecal microbiota, short-chain fatty acids (SCFA), and other metabolites were investigated. Significant differences in microbial, SCFA, and metabolite composition were observed between fermentation of sheep and cow milk using fecal inoculum from a one-month-old infant, but comparatively minimal differences using fecal inoculum from a five-month-old infant. These results show that sheep milk and cow milk can have differential effects on the gut microbiota, while demonstrating the individuality of the gut microbiome.


2012 ◽  
Vol 60 (8) ◽  
pp. 2024-2032 ◽  
Author(s):  
Alejandra Cardelle-Cobas ◽  
Agustín Olano ◽  
Nieves Corzo ◽  
Mar Villamiel ◽  
Michelle Collins ◽  
...  

Author(s):  
Justin L. Caelson ◽  
Jennifer M. Erickson ◽  
Julie M. Hess ◽  
Trevor J. Gould ◽  
Joanne L. Slavin

Prebiotic dietary fiber supplements are commonly consumed to help meet fiber recommendations and improve gastrointestinal health by stimulating beneficial bacteria and the production of short-chain fatty acids (SCFAs), molecules beneficial to host health. The objective of this research project was to compare potential prebiotic effects and fermentability of five commonly consumed fibers using an in vitro fermentation system measuring changes in fecal microbiota, total gas production and formation of common SCFAs. Fecal donations were collected from three healthy volunteers. Materials analyzed included: pure beta-glucan, Oatwell (commercially available oat-bran containing 22% oat &beta;-glucan), xylooligosaccharides (XOS), WholeFiber (dried chicory root containing inulin, pectin, and hemi/celluloses), and pure inulin. Oatwell had the highest production of propionate at 12 h (4.76 &mu;mol/mL) compared to inulin, WholeFiber and XOS samples (p&lt;0.03). Oatwell&rsquo;s effect was similar to those of the pure beta-glucan samples, both samples promoted the highest mean propionate production at 24 h. XOS resulted in a significant increase in the genus Bifidobacterium after 24 h of fermentation (0 h: 0.67 OTUs; 24 h: 5.22 OTUs; p = 0.038). Inulin and WholeFiber increased the beneficial genus Collinsella, consistent with findings in clinical studies. All analyzed compounds were fermentable and promoted the formation of beneficial SCFAs.


2015 ◽  
Vol 130 ◽  
pp. 191-197 ◽  
Author(s):  
Pinthip Rumpagaporn ◽  
Brad L. Reuhs ◽  
Amandeep Kaur ◽  
John A. Patterson ◽  
Ali Keshavarzian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document