scholarly journals Family SES Is Associated with the Gut Microbiome in Infants and Children

2021 ◽  
Vol 9 (8) ◽  
pp. 1608
Author(s):  
Candace R. Lewis ◽  
Kevin S. Bonham ◽  
Shelley Hoeft McCann ◽  
Alexandra R. Volpe ◽  
Viren D’Sa ◽  
...  

Background: While early life exposures such as mode of birth, breastfeeding, and antibiotic use are established regulators of microbiome composition in early childhood, recent research suggests that the social environment may also exert influence. Two recent studies in adults demonstrated associations between socioeconomic factors and microbiome composition. This study expands on this prior work by examining the association between family socioeconomic status (SES) and host genetics with microbiome composition in infants and children. Methods: Family SES was used to predict a latent variable representing six genera abundances generated from whole-genome shotgun sequencing. A polygenic score derived from a microbiome genome-wide association study was included to control for potential genetic associations. Associations between family SES and microbiome diversity were assessed. Results: Anaerostipes, Bacteroides, Eubacterium, Faecalibacterium, and Lachnospiraceae spp. significantly loaded onto a latent factor, which was significantly predicted by SES (p < 0.05) but not the polygenic score (p > 0.05). Our results indicate that SES did not predict alpha diversity but did predict beta diversity (p < 0.001). Conclusions: Our results demonstrate that modifiable environmental factors influence gut microbiome composition at an early age. These results are important as our understanding of gut microbiome influences on health continue to expand.

mBio ◽  
2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Lauren E. Fuess ◽  
Stijn den Haan ◽  
Fei Ling ◽  
Jesse N. Weber ◽  
Natalie C. Steinel ◽  
...  

ABSTRACT Commensal microbial communities have immense effects on their vertebrate hosts, contributing to a number of physiological functions, as well as host fitness. In particular, host immunity is strongly linked to microbiota composition through poorly understood bi-directional links. Gene expression may be a potential mediator of these links between microbial communities and host function. However, few studies have investigated connections between microbiota composition and expression of host immune genes in complex systems. Here, we leverage a large study of laboratory-raised fish from the species Gasterosteus aculeatus (three-spined stickleback) to document correlations between gene expression and microbiome composition. First, we examined correlations between microbiome alpha diversity and gene expression. Our results demonstrate robust positive associations between microbial alpha diversity and expression of host immune genes. Next, we examined correlations between host gene expression and abundance of microbial taxa. We identified 15 microbial families that were highly correlated with host gene expression. These families were all tightly correlated with host expression of immune genes and processes, falling into one of three categories—those positively correlated, negatively correlated, and neutrally related to immune processes. Furthermore, we highlight several important immune processes that are commonly associated with the abundance of these taxa, including both macrophage and B cell functions. Further functional characterization of microbial taxa will help disentangle the mechanisms of the correlations described here. In sum, our study supports prevailing hypotheses of intimate links between host immunity and gut microbiome composition. IMPORTANCE Here, we document associations between host gene expression and gut microbiome composition in a nonmammalian vertebrate species. We highlight associations between expression of immune genes and both microbiome diversity and abundance of specific microbial taxa. These findings support other findings from model systems which have suggested that gut microbiome composition and host immunity are intimately linked. Furthermore, we demonstrate that these correlations are truly systemic; the gene expression detailed here was collected from an important fish immune organ (the head kidney) that is anatomically distant from the gut. This emphasizes the systemic impact of connections between gut microbiota and host immune function. Our work is a significant advancement in the understanding of immune-microbiome links in nonmodel, natural systems.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1595-1595
Author(s):  
Sabrina Trudo ◽  
Rosa Moreno ◽  
Jeong Hoon Pan ◽  
Daniel Gallaher ◽  
Jae Kyeom Kim ◽  
...  

Abstract Objectives Cruciferous (CRU; rich in glucosinolates) and apiaceous (API; rich in furanocoumarins) vegetable intake decrease colon cancer risk markers, likely through different mechanisms. Previous reports suggest background diets influence efficacy of bioactives. Here, we determined the effects on the composition of the gut microbiome of CRU and API supplementation to different background diets, diet-induced obesity (DIO) and the total western diet (TWD). Methods C57BL/6J male mice were fed standard diet (AIN93G), DIO, DIO with 21% (w/w) CRU (DIO + CRU), DIO with 21% (w/w) API (DIO + API), TWD, TWD with CRU (TWD + CRU), or TWD with API (TWD + API). After 12 weeks, cecal contents were collected for 16S rRNA sequencing and data analyzed by mothur. Results There were no differences in body weight gain except mice fed DIO + CRU gained more than mice fed AIN-93G or TWD. Lachnospiraceae was increased by CRU supplementation to both DIO and TWD and by API supplementation to TWD. CRU increased alpha diversity [Shannon Index, number of observed Operational Taxonomic Unit (OTUs)] compared to DIO and TWD. Regarding beta diversity, DIO + CRU showed distinct cluster compared to DIO (Bray-Curtis, ANOSIM, R = 0.35, P &lt; 0.001; Jaccard distance, R = 0.47, P &lt; 0.001). TWD + CRU showed distinct cluster compared to TWD (Bray-Curtis, R = 0.59, P &lt; 0.001; Jaccard distance, R = 0.62, P &lt; 0.001). API did not change alpha diversity, but did affect beta diversities with distinct clusters between API groups and their basal diet groups (Jaccard distance, R = 0.36 and 0.31 for DIO and TWD, respectively, P &lt; 0.05). Among top 25 discriminating features between DIO and TWD and their supplementation of API and CRU, there were 9 shared OTUs including Lachnospiraceae, Clostridium XlVa, Clostridiales, Eisenbergiella, and Clostridium IV. Akkermansia were decreased in DIO + CRU compared with DIO. In TWD panel, Bifidobacterium and Erysipelotrichaceae decreased in TWD + CRU, while Turicibacter were identified as TWD + CRU signature. Erysipelotrichaceae and Bifidobacterium differentiated AIN-93G, DIO, and TWD. Conclusions CRU supplementation of DIO and TWD altered gut microbiome composition with some differences based on background diet. API also altered composition, albeit to a lesser extent. Funding Sources University of Arkansas, Fulbright Nicaragua Fellow.


Rheumatology ◽  
2020 ◽  
Author(s):  
Maxim B Freidin ◽  
Maria A Stalteri ◽  
Philippa M Wells ◽  
Genevieve Lachance ◽  
Andrei-Florin Baleanu ◽  
...  

Abstract Objectives Chronic widespread musculoskeletal pain (CWP) is a characteristic symptom of fibromyalgia, which has been shown to be associated with an altered gut microbiome. Microbiome studies to date have not examined the milder CWP phenotype specifically nor have they explored the role of raised BMI. The aim of this study was to investigate whether the microbiome is abnormal in CWP. Methods CWP was assessed using a standardized screening questionnaire in female volunteers from the TwinsUK cohort including 113 CWP cases and 1623 controls. The stool microbiome was characterised using 16S rRNA amplicon sequencing and amplicon sequence variants (ASVs), and associations with CWP examined using linear mixed-effects models adjusting for BMI, age, diet, family relatedness and technical factors. Results Alpha diversity was significantly lower in CWP cases than controls (Mann–Whitney test, p-values 2.3e-04 and 1.2e-02, respectively). The species Coprococcus comes was significantly depleted in CWP cases (p.adj = 3.04e-03). A genome-wide association study (GWAS) performed for C. comes in TwinsUK followed by meta-analysis with three Dutch cohorts (total n = 3521) resulted in nine suggestive regions, with the most convincing on chromosome 4 near the TRAM1L1 gene (rs76957229, p= 7.4e-8). A Mendelian randomisation study based on the results of the GWAS did not support a causal role for C. comes on the development of CWP. Conclusions We have demonstrated reduced diversity in the microbiome in CWP, indicating an involvement of the gut microbiota in CWP; prospectively the microbiome may offer therapeutic opportunities for this condition.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jason W. Arnold ◽  
Hunter D. Whittington ◽  
Suzanne F. Dagher ◽  
Jeffery Roach ◽  
M. Andrea Azcarate-Peril ◽  
...  

Complex dietary carbohydrate structures including β(1–4) galacto-oligosaccharides (GOS) are resistant to digestion in the upper gastrointestinal (GI) tract and arrive intact to the colon where they benefit the host by selectively stimulating microbial growth. Studies have reported the beneficial impact of GOS (alone or in combination with other prebiotics) by serving as metabolic substrates for modulating the assembly of the infant gut microbiome while reducing GI infections. N-Acetyl-D-lactosamine (LacNAc, Galβ1,4GlcNAc) is found in breast milk as a free disaccharide. This compound is also found as a component of human milk oligosaccharides (HMOs), which have repeating and variably branched lactose and/or LacNAc units, often attached to sialic acid and fucose monosaccharides. Human glycosyl-hydrolases do not degrade most HMOs, indicating that these structures have evolved as natural prebiotics to drive the proper assembly of the infant healthy gut microbiota. Here, we sought to develop a novel enzymatic method for generating LacNAc-enriched GOS, which we refer to as humanized GOS (hGOS). We showed that the membrane-bound β-hexosyl transferase (rBHT) from Hamamotoa (Sporobolomyces) singularis was able to generate GOS and hGOS from lactose and N-Acetyl-glucosamine (GlcNAc). The enzyme catalyzed the regio-selective, repeated addition of galactose from lactose to GlcNAc forming the β-galactosyl linkage at the 4-position of the GlcNAc and at the 1-position of D-galactose generating, in addition to GOS, LacNAc, and Galactosyl-LacNAc trisaccharides which were produced by two sequential transgalactosylations. Humanized GOS is chemically distinct from HMOs, and its effects in vivo have yet to be determined. Thus, we evaluated its safety and demonstrated the prebiotic's ability to modulate the gut microbiome in 6-week-old C57BL/6J mice. Longitudinal analysis of gut microbiome composition of stool samples collected from mice fed a diet containing hGOS for 5 weeks showed a transient reduction in alpha diversity. Differences in microbiome community composition mostly within the Firmicutes phylum were observed between hGOS and GOS, compared to control-fed animals. In sum, our study demonstrated the biological synthesis of hGOS, and signaled its safety and ability to modulate the gut microbiome in vivo, promoting the growth of beneficial microorganisms, including Bifidobacterium and Akkermansia.


Author(s):  
Alexander Kurilshikov ◽  
Carolina Medina-Gomez ◽  
Rodrigo Bacigalupe ◽  
Djawad Radjabzadeh ◽  
Jun Wang ◽  
...  

AbstractTo study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed whole-genome genotypes and 16S fecal microbiome data from 18,473 individuals (25 cohorts). Microbial composition showed high variability across cohorts: we detected only 9 out of 410 genera in more than 95% of the samples. A genome-wide association study (GWAS) of host genetic variation in relation to microbial taxa identified 30 loci affecting microbome taxa at a genome-wide significant (P<5×10-8) threshold. Just one locus, the lactase (LCT) gene region, reached study-wide significance (GWAS signal P=8.6×10−21); it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.94×10−10<P<5×10−8) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization analyses identified enrichment of microbiome trait loci SNPs in the metabolic, nutrition and environment domains and indicated food preferences and diseases as mediators of genetic effects.


2021 ◽  
Author(s):  
Koen F. Dekkers ◽  
Sergi Sayols-Baixeras ◽  
Gabriel Baldanzi ◽  
Christoph Nowak ◽  
Ulf Hammar ◽  
...  

The human gut microbiota produces a variety of small compounds, some of which enter the bloodstream and impact host health. Conversely, various exogenous nutritional and pharmaceutical compounds affect the gut microbiome composition before entering circulation. Characterization of the gut microbiota—host plasma metabolite interactions is an important step towards understanding the effects of the gut microbiota on human health. However, studies involving large and deeply phenotyped cohorts that would reveal such meaningful interactions are scarce. Here, we used deep metagenomic sequencing and ultra-high-performance liquid chromatography linked to mass spectrometry for detailed characterization of the fecal microbiota and plasma metabolome, respectively, of 8,584 participants invited at age 50 to 64 of the Swedish CArdioPulmonary bioImage Study (SCAPIS). After adjusting for multiple comparisons, we identified 1,008 associations between species alpha diversity and plasma metabolites, and 318,944 associations between specific gut metagenomic species and plasma metabolites. The gut microbiota explained up to 50% of the variance of individual plasma metabolites (mean of 4.7%). We present all results as the searchable association atlas "GUTSY" as a rich resource for mining associations, and exemplify the potential of the atlas by presenting novel associations between oral medication and the gut microbiome, and microbiota species strongly associated with levels of the uremic toxin p-cresol sulfate. The association atlas can be used as the basis for targeted studies of perturbation of specific bacteria and for identification of candidate plasma biomarkers of gut flora composition.


2021 ◽  
Vol 9 (9) ◽  
pp. 2002
Author(s):  
Chang Eon Park ◽  
Bum-Joon Cho ◽  
Min-Ji Kim ◽  
Hee Cheon Park ◽  
Jae-Ho Shin

The long-tailed goral (Naemorhedus caudatus) is an endangered species found in the mountains of eastern and northern Asia. Its populations have declined for various reasons, and this species has been designated as legally protected in South Korea. Although various ecological studies have been conducted on long-tailed gorals, none have investigated the gut microbiome until now. In the present study, we compared the diversity and composition of the gut microbiome of seven populations of Korean long-tailed gorals. By analyzing the gut microbiome composition for each regional population, it was found that four phyla—Firmicutes, Actinobacteriota, Bacteroidota, and Proteobacteria—were the most dominant in all regions on average. The alpha diversity of the gut microbiome of the goral population in the northern regions was high, while that in the southern regions was low. Through the analysis of beta diversity, the seven long-tailed goral populations have been divided into three groups: the Seoraksan population, the Samcheock population, and the Wangpicheon population. It was possible to confirm the regional migration of the animals using the gut microbiome based on the site-relational network analysis. It was found that the most stable population of long-tailed gorals in Korea was the Seoraksan population, and the closely related groups were the Samcheok and Wangpicheon populations, respectively. Wangpicheon appeared to be a major point of dispersal in the migration route of Korean long-tailed gorals.


2019 ◽  
Vol 10 (3) ◽  
pp. 265-278 ◽  
Author(s):  
V. Stadlbauer ◽  
A. Horvath ◽  
I. Komarova ◽  
B. Schmerboeck ◽  
N. Feldbacher ◽  
...  

The gut is hypothesised to play an important role in the development and progression of sepsis. It is however unknown whether the gut microbiome and the gut barrier function is already altered early in sepsis development and whether it is possible to modulate the microbiome in early sepsis. Therefore, a randomised, double blind, placebo-controlled pilot study to examine the alterations of the microbiome and the gut barrier in early sepsis and the influence of a concomitant probiotic intervention on dysbiosis at this early stage of the disease was conducted. Patients with early sepsis, defined as fulfilling the sepsis definition from the 2012 Surviving Sepsis Campaign guidelines but without signs of organ failure, received multispecies probiotic (Winclove 607 based on Omnibiotic® 10 AAD) for 28 days. Gut microbiome composition, function, gut barrier and bacterial translocation were studied. Patients with early sepsis had a significantly lower structural and functional alpha diversity, clustered differently and showed structural alterations on all taxonomic levels. Gut permeability was unaltered but endotoxin, endotoxin binding proteins and peptidoglycans were elevated in early sepsis patients compared to controls. Probiotic intervention successfully increased probiotic strains in stool and led to an improvement of functional diversity. Microbiome composition and function are altered in early sepsis. Probiotic intervention successfully modulates the microbiome and is therefore a promising tool for early intervention in sepsis.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 393-393
Author(s):  
Moamen Elmassry ◽  
Eunhee Chung ◽  
Abdul Hamood ◽  
Chwan-Li Shen

Abstract Objectives In recent years, characterization of gut microbiota composition and function were linked to the progression of type 2 diabetes mellitus. Recent evidence showed that Geranylgeraniol, an isoprenoid found in fruits, vegetables, and grains, improves glucose homeostasis. Similarly, Tocotrienols, a subfamily of vitamin E, also contains anti-diabetic properties. In this study, we examined the combined effect of geranylgeraniol and tocotrienols on the composition and function of gut microbiome in obese male mice. Methods Forty male C57BL/6J mice were assigned to 4 groups in a factorial design as follows: high-fat diet (HFD) (control group), HFD + geranylgeraniol [400 mg/kg diet] (GG group), HFD + tocotrienols [400 mg/kg diet] (TT group), and HFD + geranylgeraniol + tocotrienols (G + T group) for 14 weeks. 16S rRNA gene sequencing was done from cecal samples and microbiome and data analysis was performed with QIIME2 and PICRUSt2. Results Across all groups, the most abundant phyla were Verrucomicrobia, Firmicutes, Bacteroidetes, and Actinobacteria. There was no difference in alpha diversity among different groups. Different treatments influenced the relative abundance of certain bacteria. In the Bacteroidetes phylum, the relative abundance of family S24–7 increased in the TT group only. In the Firmicutes phylum, the relative abundance of family Lachnospiraceae was reduced upon the supplementation of geranylgeraniol or tocotrienols; individually or in combination. In Verrucomicrobia phylum, Akkermansia muciniphila relative abundance was reduced in the TT group but increased in the G + T group. The results of functional profiling of the gut microbiome revealed that geranylgeraniol supplementation caused an increase in the proportion of biosynthetic pathways related to purine, pyrimidine, and inosine-5’-phosphate and hexitol fermentation, and a decrease in the proportion of pathways involved in the biosynthesis of isoleucine, valine, histidine, arginine, and chorismate. The G + T group increased pathways related to thiamine diphosphate biosynthesis, and decreased others involved into sulfur oxidation and methylerythritol phosphate. Conclusions The influence of geranylgeraniol and tocotrienols supplementation on gut microbiome composition and function, suggests a prebiotic potential for the potential of geranylgeraniol and tocotrienols. Funding Sources American River Nutrition, LLC, Hadley, MA.


Sign in / Sign up

Export Citation Format

Share Document