scholarly journals T-Cell Exhaustion in Mycobacterium tuberculosis and Nontuberculous Mycobacteria Infection: Pathophysiology and Therapeutic Perspectives

2021 ◽  
Vol 9 (12) ◽  
pp. 2460
Author(s):  
Andrea Lombardi ◽  
Simone Villa ◽  
Valeria Castelli ◽  
Alessandra Bandera ◽  
Andrea Gori

Immune exhaustion is a condition associated with chronic infections and cancers, characterized by the inability of antigen-specific T cells to eliminate the cognate antigen. Exhausted T cells display a peculiar phenotypic profile and exclusive functional characteristics. Immune exhaustion has been described in patients with Mycobacterium tuberculosis infection, and cases of tuberculosis reactivation have been reported in those treated with immune checkpoint inhibitors, drugs able to re-establish T-cells’ function. Exhausted T CD8+ cells’ profile has also been described in patients with infection due to nontuberculous mycobacteria. In this review, we initially provide an overview of the mechanisms leading to immune exhaustion in patients infected by Mycobacterium tuberculosis and nontuberculous mycobacteria. We then dissect the therapeutic perspectives related to immune checkpoint blockade in patients with these infections.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wenwen Yang ◽  
Caining Lei ◽  
Shaoming Song ◽  
Wutang Jing ◽  
Chuanwei Jin ◽  
...  

AbstractAfter being stagnant for decades, there has finally been a paradigm shift in the treatment of cancer with the emergence and application of immune checkpoint inhibitors (ICIs). The most extensively utilized ICIs are targeting the pathways involving programmed death-1 (PD-1) and cytotoxic T-lymphocyte associated protein 4 (CTLA-4). PD-1, as an crucial immune inhibitory molecule, by and large reasons the immune checkpoint response of T cells, making tumor cells get away from immune surveillance. Programmed cell death ligand-1 (PD-L1) is exceptionally expressed in most cancers cells and approves non-stop activation of the PD-1 pathway in the tumor microenvironment. PD-1/PD-L1 inhibitors can block the combination of PD-1 and PD-L1, inhibit hostile to regulatory signals, and restore the activity of T cells, thereby bettering immune response. The current researchers assume that the efficacy of these drugs is related to PD-L1 expression in tumor tissue, tumor mutation burden (TMB), and other emerging biomarkers. Although malignant tumors can benefit from the immunotherapy of PD-1/PD-L1 inhibitors, formulating a customized medication model and discovering biomarkers that can predict efficacy are the new trend in the new era of malignant tumor immunotherapy. This review summarizes the mechanism of action of PD-1/PD-L1 inhibitors, their clinical outcomes on various malignant tumors, their efficacy biomarkers, as well as predictive markers of irAEs.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A683-A683
Author(s):  
Barbara Ma ◽  
Abhinav Jaiswal ◽  
K Sanjana Devi ◽  
Qingrong Huang ◽  
Joy Hsu ◽  
...  

BackgroundImmune checkpoint inhibitors (ICIs) are limited by the high incidence of immune-related adverse events (irAEs) occurring in up to 40% of solid tumor patients on anti-PD-1 monotherapy 1 2 and 72% in anti-CTLA-4/anti-PD-1 combination.3 4 These toxicities can cause treatment cessation, hospitalization and even death.5–7 IrAEs are variable in severity, timing, onset, and remain poorly understood. Amongst the different toxicities, skin irAEs are most frequent, occur the earliest, and are correlated with a positive prognosis.4 8 However, there is a lack of preclinical models to study checkpoint toxicity. We evaluated a murine model of allergic contact dermatitis (contact hypersensitivity to 2,4-dinitrofluorobenzene) that is mediated by CD8+ T cells to gain a mechanistic understanding of skin checkpoint toxicity.MethodsC57BL/6 mice (n = 5 per group) were sensitized epicutaneously on shaved flank with hapten 0.5% DNFB on day -5 and elicited on their ears with DNFB on day 0. Starting four weeks later, mice were treated with either anti-programmed cell death protein (PD-1) or isotype. At the time of the first recall challenge only, mice were given either anti-PD-1 or isotype. Mice received subsequent rechallenges with DNFB to the ears and ear swelling was measured at various time points. Mice were depleted of circulating or skin CD8+ T cells by anti-CD8 mAbs from day 29 onwards, and maintained weekly, as in this model CD8+ T cells are the main hapten responder population. Samples were collected for histochemistry and analyzed by flow cytometry.ResultsOur data indicate that despite the depletion of circulating T cells, anti-PD-1 recipients mount a higher initial recall response to contact agents. Higher ear swelling was observed with increased inflammation in these mice. Our data suggest anti-PD-1 can liberate local T cell responses in the absence of a contribution from blood, and may offer a model to test therapeutic interventions to alleviate peripheral immune toxicities.ConclusionsOur results suggest that this murine model of contact hypersensitivity represents a potential model for skin immune checkpoint toxicities. This model of locally-mediated inflammatory recall may advance the goal of uncoupling toxicity from efficacy in patients with immune-related adverse events.Ethics ApprovalThe animal study was approved by Weill Cornell Medicine’s IACUC; approval number D16-00186.ReferencesNaidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 2015;26(12):2375–91. doi: 10.1093/annonc/mdv383.Belum VR, Benhuri B, Postow MA, et al. Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur J Cancer 2016;60:12–25. doi: 10.1016/j.ejca.2016.02.010.Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N Engl J Med 2018;378(2):158–168. doi: 10.1056/NEJMra1703481.Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol 2019;16(9):563–580. doi: 10.1038/s41571-019-0218-0.Puzanov I, Diab A, Abdallah K, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the society for immunotherapy of cancer (SITC) Toxicity Management Working Group. J Immunother Cancer 2017;5(1):95. doi: 10.1186/s40425-017-0300-z.Wills B, Brahmer JR, Naidoo J. Treatment of complications from immune checkpoint inhibition in patients with lung cancer. Curr Treat Options Oncol 2018;19(9):46. doi: 10.1007/s11864-018-0562-9.Michot JM, Bigenwald C, Champiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 2016;54:139–148. doi: 10.1016/j.ejca.2015.11.016.Phillips GS, Wu J, Hellmann MD, et al. Treatment outcomes of immune-related cutaneous adverse events. J Clin Oncol 2019:JCO1802141. doi: 10.1200/JCO.18.02141.


2021 ◽  
Vol 6 (55) ◽  
pp. eabf3861
Author(s):  
Keith D. Kauffman ◽  
Shunsuke Sakai ◽  
Nickiana E. Lora ◽  
Sivaranjani Namasivayam ◽  
Paul J. Baker ◽  
...  

Boosting immune cell function by targeting the coinhibitory receptor PD-1 may have applications in the treatment of chronic infections. Here, we examine the role of PD-1 during Mycobacterium tuberculosis (Mtb) infection of rhesus macaques. Animals treated with anti–PD-1 monoclonal antibody developed worse disease and higher granuloma bacterial loads compared with isotype control–treated monkeys. PD-1 blockade increased the number and functionality of granuloma Mtb-specific CD8 T cells. In contrast, Mtb-specific CD4 T cells in anti–PD-1–treated macaques were not increased in number or function in granulomas, expressed increased levels of CTLA-4, and exhibited reduced intralesional trafficking in live imaging studies. In granulomas of anti–PD-1–treated animals, multiple proinflammatory cytokines were elevated, and more cytokines correlated with bacterial loads, leading to the identification of a role for caspase 1 in the exacerbation of tuberculosis after PD-1 blockade. Last, increased Mtb bacterial loads after PD-1 blockade were found to associate with the composition of the intestinal microbiota before infection in individual macaques. Therefore, PD-1–mediated coinhibition is required for control of Mtb infection in macaques, perhaps because of its role in dampening detrimental inflammation and allowing for normal CD4 T cell responses.


2021 ◽  
Vol 9 (1) ◽  
pp. e001660
Author(s):  
Fatima Ahmetlic ◽  
Josia Fauser ◽  
Tanja Riedel ◽  
Vera Bauer ◽  
Carolin Flessner ◽  
...  

BackgroundAlthough antibodies blocking immune checkpoints have already been approved for clinical cancer treatment, the mechanisms involved are not yet completely elucidated. Here we used a λ-MYC transgenic model of endogenously growing B-cell lymphoma to analyze the requirements for effective therapy with immune checkpoint inhibitors.MethodsGrowth of spontaneous lymphoma was monitored in mice that received antibodies targeting programmed cell death protein 1 and cytotoxic T lymphocyte-associated protein-4, and the role of different immune cell compartments and cytokines was studied by in vivo depletion experiments. Activation of T and natural killer cells and the induction of tumor senescence were analyzed by flow cytometry.ResultsOn immune checkpoint blockade, visible lymphomas developed at later time points than in untreated controls, indicating an enhanced tumor control. Importantly, 20% to 30% of mice were even long-term protected and did never develop clinical signs of tumor growth. The therapeutic effect was dependent on cytokine-induced senescence in malignant B cells. The proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor (TNF) were necessary for the survival benefit as well as for senescence induction in the λ-MYC model. Antibody therapy improved T-cell functions such as cytokine production, and long-time survivors were only observed in the presence of T cells. Yet, NK cells also had a pronounced effect on therapy-induced delay of tumor growth. Antibody treatment enhanced numbers, proliferation and IFN-γ expression of NK cells in developing tumors. The therapeutic effect was fully abrogated only after depletion of both, T cells and NK cells, or after ablation of either IFN-γ or TNF.ConclusionsTumor cell senescence may explain why patients responding to immune checkpoint blockade frequently show stable growth arrest of tumors rather than complete tumor regression. In the lymphoma model studied, successful therapy required both, tumor-directed T-cell responses and NK cells, which control, at least partly, tumor development through cytokine-induced tumor senescence.


2020 ◽  
Author(s):  
Keith D Kauffman ◽  
Shunsuke Sakai ◽  
Nickiana E Lora ◽  
Sivaranjani Namasivayam ◽  
Paul J Baker ◽  
...  

ABSTRACTBoosting immune cell function by targeting the co-inhibitory receptor PD-1 may have applications in the treatment of chronic infections. Here we examine the role of PD-1 during Mycobacterium tuberculosis (Mtb) infection of rhesus macaques. Animals treated with αPD-1 mAb developed worse disease and higher granuloma bacterial loads compared to isotype control treated monkeys. PD-1 blockade increased the number and functionality of granuloma Mtb-specific CD8 T cells. In contrast, Mtb-specific CD4 T cells in αPD-1 treated macaques were not increased in number or function in granulomas, upregulated high levels of CTLA-4 and exhibited reduced intralesional trafficking in live imaging studies. In granulomas of αPD-1 treated animals, multiple pro-inflammatory cytokines were elevated, and more cytokines correlated with bacterial loads, leading to the identification of a role for caspase 1 in the exacerbation of tuberculosis after PD-1 blockade. Lastly, increased Mtb bacterial loads after PD-1 blockade were found to associate with the composition of the intestinal microbiota prior to infection in individual macaques. Therefore, PD-1-mediated co-inhibition is required for control of Mtb infection in macaques, perhaps due to its role in dampening detrimental inflammation as well as allowing for normal CD4 T cell responses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah J. Dart ◽  
Alistair M. Cook ◽  
Michael J. Millward ◽  
Alison M. McDonnell ◽  
Wee L. Chin ◽  
...  

AbstractAdvances in cancer immunology have increased the use of immune checkpoint inhibitors in clinical practice, however not all patients respond, and treatment can have severe side-effects. Blood-based immunological biomarkers are an attractive method for predicting which patients will respond to therapy, however, reliable biomarkers for immune checkpoint blockade are lacking. This study aimed to identify patients before or early in treatment who would best respond to PD-1 inhibitors. We hypothesised that higher baseline PD-L1 and/or PD-1 on peripheral blood T cells could predict radiological response to PD-1 inhibitors. This pilot prospective cohort study assessed 26 patients with melanoma or non-small cell lung cancer, treated with pembrolizumab, nivolumab, or nivolumab/ipilimumab combined. Response was assessed by RECIST 1.1. Peripheral blood lymphocytes collected at baseline, after one cycle, 10 weeks and at discontinuation of therapy were analysed by flow cytometry. Patients with a higher proportion of PD-L1+ T cells at baseline had improved objective response to PD-1 inhibitor therapy, and patients with a lower proportion of regulatory T cells at baseline experienced more immune-related adverse events. These findings may prove useful to assist in clinical decision making. Further studies with larger cohorts are required to validate these findings.


2020 ◽  
Author(s):  
Qianhui Xu ◽  
Yuxin Wang ◽  
Wen Huang

Abstract Background: There have numerous evidences to support that long non-coding RNAs (lncRNAs) may be crucial parts in cancer immunity. We aimed to establish a novel and robust immune-associated lncRNAs signature to improve prognostic precision in patients with breast cancer(BRCA).Methods: BRCA cases were obtained from the The Cancer Genome Atlas (TCGA) database. Immune‐related lncRNAs presenting significant association with prognosis were screened through stepwise univariate Cox regression and LASSO algorithm, and multivariate Cox regression. Kaplan-Meier analysis, ROC analyses, and proportional hazards model further conducted. The prediction reliability was further estimated in the internal validation set and combination set. Gene set enrichment analysis (GSEA) was applied for functional annotation. The correlation between immune checkpoint inhibitors and this signature was employed. Results: 13 immune-related lncRNAs were systematically identified to establish immune-related lncRNAs predictive prognosis signature. The risk model we built showed significant correlation with BRCA patients’ prognosis. The value of ROC for this lncRNAs model was up to 0.821. This immune‐related lncRNAs signature can serve as an independent prognostic biomolecular factor. Our lncRNAs signature involved in chondrocyte development, endoderm development and so forth. This lncRNAs risk model was associated with tumor immune infiltration (i.e., B cells, Dendritic, Neutrophils, CD8 T cells and CD4 T cells, etc.,) and immune checkpoint blockade (ICB) therapy key molecules (i.e., PDCD1).Conclusion: The immune‐related lncRNA signature we established possesses latent prognostic value for patients with BRCA and may have the capability to predict the clinical outcome of ICB treatment, which could provide guidance for immunological decision in patients with BRCA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan Marable ◽  
Damien Ruiz ◽  
Anil K. Jaiswal ◽  
Ritankar Bhattacharya ◽  
Robert Pantazes ◽  
...  

AbstractCancer is the leading cause of death in the geriatric dog population. Currently, the use of immune checkpoint inhibitors (ICIs) such as anti-CTLA4 antibodies has markedly improved the prognosis of several cancers in their advanced stages. However, ICIs targeting CTLA4 blockade to treat canine cancer patients are yet to define. In this study, we sought to develop, characterize and assess whether chimeric heavy chain only antibodies (cHcAbs) against CTLA4 are viable therapeutic candidates for the treatment of canine cancers. Anti-CTLA4 nanobodies (Nbs) were identified from a yeast nanobody (Nb) library using magnetic-assisted cell sorting (MACS) and flow cytometry. cHcAbs were engineered by genetically fusing the DNA sequences coding for anti-CTLA4 Nbs with the Fc domain of the subclass B of canine IgG. Recombinant cHcAbs were purified from ExpiCHO-S cells. Stable cell lines expressing canine CTLA4 and FcγRI were used to elucidate the binding ability and specificity of cHcAbs. PBMCs isolated from healthy dogs were used to evaluate the ability of cHcAbs to activate canine PBMCs (cPBMCs). Novel Nbs were identified using the extracellular domain of canine CTLA4 protein to screen a fully synthetic yeast nanobody library. Purified Nbs bind specifically to natïve canine CTLA4. We report that chimeric HcAbs, which were engineered by fusing the anti-CTLA4 Nbs and Fc region of subclass B of canine IgG, were half the size of a conventional mAb and formed dimers. The chimeric HcAbs specifically binds both with canine CTLA4 and Fcγ receptors. As the binding of Nbs overlapped with the MYPPPY motif of canine CTLA4, these Nbs were expected to sterically disrupt the interaction of canine CTLA4 to B-7s. Like their human counterpart, canine CTLA4 was expressed on helper T cells and a small subset of cytotoxic T cells. Canine Tregs also constitutively expressed CTLA4, and stimulation with PMA/Ionomycin dramatically increased expression of CTLA4 on the cell surface. Stimulation of cPBMCs in the presence of agonistic anti-CD3 Ab and cHcAb6 significantly increased the expression of IFN-γ as compared to the isotype control. This study identifies a novel nanobody-based CTLA4 inhibitor for the treatment of canine cancer patients.


2021 ◽  
Author(s):  
Jonathan Marable ◽  
Damien Ruiz ◽  
Anil K. Jaiswal ◽  
Ritankar Bhattacharya ◽  
Robert Pantazes ◽  
...  

Abstract Background Cancer is the leading cause of death in the geriatric dog population. Currently, the use of immune checkpoint inhibitors (ICIs) such as anti-CTLA4 antibodies has markedly improved the prognosis of several cancers in their advanced stages. However, ICIs targeting CTLA4 blockade to treat canine cancer patients are yet to define. In this study, we sought to develop, characterize and assess whether chimeric heavy chain only antibodies (cHcAbs) against CTLA4 are viable therapeutic candidates for the treatment of canine cancers.Methods Anti-CTLA4 nanobodies (Nbs) were identified from a yeast nanobody (Nb) library using magnetic-assisted cell sorting (MACS) and flow cytometry. cHcAbs were engineered by genetically fusing the DNA sequences coding for anti-CTLA4 Nbs with the Fc domain of the subclass B of canine IgG. Recombinant cHcAbs were purified from ExpiCHO-S cells. Stable cell lines expressing canine CTLA4 and FcγRI were used to elucidate the binding ability and specificity of cHcAbs. PBMCs isolated from healthy dogs were used to evaluate the ability of cHcAbs to activate canine PBMCs.Results Novel Nbs were identified using the extracellular domain of canine CTLA4 protein to screen a fully synthetic yeast nanobody library. Purified Nbs bind specifically to natïve canine CTLA4. We report that chimeric HcAbs, which were engineered by fusing the anti-CTLA4 Nbs and Fc region of subclass B of canine IgG, were half the size of a conventional mAb and formed dimers. The chimeric HcAbs specifically binds both with canine CTLA4 and FcƳ receptors. As the binding of Nbs overlapped with the MYPPPY motif of canine CTLA4, these Nbs were expected to sterically disrupt the interaction of canine CTLA4 to B-7s. Like their human counterpart, canine CTLA4 was expressed on helper T cells and a small subset of cytotoxic T cells. Canine Tregs also constitutively expressed CTLA4, and stimulation with PMA/Ionomycin dramatically increased expression of CTLA4 on the cell surface. Stimulation of canine PBMCs in the presence of agonistic anti-CD3 Ab and cHcAb6 significantly increased the expression of IFN-γ as compared to the isotype control.Conclusions This study identifies a novel nanobody-based CTLA4 inhibitor for the treatment of canine cancer patients. Furthermore, this approach provides a critical proof-of-concept for developing nanobody-based humanized anti-CTLA4 therapy for advanced stages of cancers.


2018 ◽  
Vol 1 (1) ◽  
pp. 28-32
Author(s):  
Piyawat Komolmit

การรักษามะเร็งด้วยแนวความคิดของการกระตุ้นให้ภูมิต้านทานของร่างกายไปทำลายเซลล์มะเร็งนั้น ปัจจุบันได้รับการพิสูจน์ชัดว่าวิธีการนี้สามารถหยุดยั้งการแพร่กระจายของเซลล์มะเร็ง โดยไม่ก่อให้เกิดภาวะแทรกซ้อนทางปฏิกิริยาภูมิต้านทานต่ออวัยวะส่วนอื่นที่รุนแรง สามารถนำมาใช้ทางคลินิกได้ ยุคของการรักษามะเร็งกำลังเปลี่ยนจากยุคของยาเคมีบำบัดเข้าสู่การรักษาด้วยภูมิต้านทาน หรือ immunotherapy ยากลุ่ม Immune checkpoint inhibitors โดยเฉพาะ PD-1 กับ CTLA-4 inhibitors จะเข้ามามีบทบาทในการรักษามะเร็งตับในระยะเวลาอันใกล้ จำเป็นแพทย์จะต้องมีความรู้ความเข้าใจในพื้นฐานของ immune checkpoints และยาที่ไปยับยั้งโมเลกุลเหล่านี้ Figure 1 เมื่อ T cells รับรู้แอนทิเจนผ่านทาง TCR/MHC จะมีปฏิกิริยาระหว่าง co-receptors หรือ immune checkpoints กับ ligands บน APCs หรือ เซลล์มะเร็ง ทั้งแบบกระตุ้น (co-stimulation) หรือยับยั้ง (co-inhibition) TCR = T cell receptor, MHC = major histocompatibility complex


Sign in / Sign up

Export Citation Format

Share Document