scholarly journals Effect of Nitrogen Addition on Soil Microbial Functional Gene Abundance and Community Diversity in Permafrost Peatland

2021 ◽  
Vol 9 (12) ◽  
pp. 2498
Author(s):  
Xiuyan Ma ◽  
Yanyu Song ◽  
Changchun Song ◽  
Xianwei Wang ◽  
Nannan Wang ◽  
...  

Nitrogen is the limiting nutrient for plant growth in peatland ecosystems. Nitrogen addition significantly affects the plant biomass, diversity and community structure in peatlands. However, the response of belowground microbe to nitrogen addition in peatland ecosystems remains largely unknown. In this study, we performed long-term nitrogen addition experiments in a permafrost peatland in the northwest slope of the Great Xing’an Mountains. The four nitrogen addition treatments applied in this study were 0 g N·m−2·year−1 (CK), 6 g N·m−2·year−1 (N1), 12 g N·m−2·year−1 (N2), and 24 g N·m−2·year−1 (N3). Effects of nitrogen addition over a period of nine growing seasons on the soil microbial abundance and community diversity in permafrost peatland were analyzed. The results showed that the abundances of soil bacteria, fungi, archaea, nitrogen-cycling genes (nifH and b-amoA), and mcrA increased in N1, N2, and N3 treatments compared to CK. This indicated that nitrogen addition promoted microbial decomposition of soil organic matter, nitrogen fixation, ammonia oxidation, nitrification, and methane production. Moreover, nitrogen addition altered the microbial community composition. At the phylum level, the relative abundance of Proteobacteria increased significantly in the N2 treatment. However, the relative abundances of Actinobacteria and Verrucifera in the N2 treatment and Patescibacteria in the N1 treatment decreased significantly. The heatmap showed that the dominant order composition of soil bacteria in N1, N2, and N3 treatments and the CK treatment were different, and the dominant order composition of soil fungi in CK and N3 treatments were different. The N1 treatment showed a significant increase in the Ace and Chao indices of bacteria and Simpson index of fungi. The outcomes of this study suggest that nitrogen addition altered the soil microbial abundance, community structure, and diversity, affecting the soil microbial carbon and nitrogen cycling in permafrost peatland. The results are helpful to understand the microbial mediation on ecological processes in response to N addition.

2019 ◽  
Vol 69 (13) ◽  
pp. 1531-1536 ◽  
Author(s):  
Lin Gao ◽  
Xin-min Liu ◽  
Yong-mei Du ◽  
Hao Zong ◽  
Guo-ming Shen

Abstract Purpose A reasonable cultivation pattern is beneficial to maintain soil microbial activity and optimize the structure of the soil microbial community. To determine the effect of tobacco−peanut (Nicotiana tabacum−Arachis hypogaea) relay intercropping on the microbial community structure in soil, we compared the effects of relay intercropping and continuous cropping on the soil bacteria community structure. Methods We collected soil samples from three different cropping patterns and analyzed microbial community structure and diversity using high-throughput sequencing technology. Result The number of operational taxonomic units (OTU) for bacterial species in the soil was maximal under continuous peanut cropping. At the phylum level, the main bacteria identified in soil were Proteobacteria, Actinobacteria, and Acidobacteria, which accounted for approximately 70% of the total. The proportions of Actinobacteria and Firmicutes increased, whereas the proportion of Proteobacteria decreased in soil with tobacco–peanut relay intercropping. Moreover, the proportions of Firmicutes and Proteobacteria among the soil bacteria further shifted over time with tobacco–peanut relay intercropping. At the genus level, the proportions of Bacillus and Lactococcus increased in soil with tobacco–peanut relay intercropping. Conclusion The community structure of soil bacteria differed considerably with tobacco–peanut relay intercropping from that detected under peanut continuous cropping, and the proportions of beneficial bacteria (the phyla Actinobacteria and Firmicutes, and the genera Bacillus and Lactococcus) increased while the proportion of potentially pathogenic bacteria (the genera Variibacter and Burkholderia) decreased. These results provide a basis for adopting tobacco–peanut relay intercropping to improve soil ecology and microorganisms, while making better use of limited cultivable land.


Author(s):  
Jing Wei ◽  
Jie Gao ◽  
Na Wang ◽  
Ying Liu ◽  
Yuwan Wang ◽  
...  

Abstract To understand the response of soil microbial communities in different types of wetlands to anthropogenic disturbances, this study focused on a freshwater wetland (Sanjiang Wetland) and a salt marsh (Momoge Wetland) and sampled cultivated, degraded, and natural soils in these wetlands. High-throughput sequencing was applied to characterize the soil microbial community composition, and physicochemical properties, including pH, total nitrogen, total carbon, and soil water content (SWC), were measured. The results revealed that the total nitrogen, total carbon, and SWC were significantly lower in disturbed soil in the freshwater wetland but higher in the salt marsh. Generally, under anthropogenic disturbances, microbial community diversity decreased in the freshwater wetland and increased in the salt marsh. The bacterial community structure in the salt marsh was more sensitive than that in the freshwater wetland, while the fungal community structure in the freshwater wetland was more susceptible than that in the salt marsh. The results of indicator value analyses revealed specific issues in two wetlands, such as methane generation and anoxic conditions. This study shows that soil microbiomes in two types of wetlands respond differently to human activities, which implies that the type of native wetlands should be considered in the exploitation of wetlands.


2021 ◽  
Author(s):  
Hongbin Zhao ◽  
Wenling Zheng ◽  
Shengwei Zhang ◽  
Wenlong Gao ◽  
Yueyue Fan

Abstract BackgroundSoil microorganisms play an indispensable role in the material and energy cycle of grassland ecosystem, and were affected by many environmental factors, such as time and space changes. However, there are few studies on the temporal and spatial transformation of soil microbial community in typical degraded steppe. We analyzed the community structure and diversity of soil bacteria and fungi and the effects of environmental factors on the community structure in Xilingol degraded steppe. ResultsThe abundance and diversity of bacteria and fungi were significantly affected by depth. Bacteria and fungi diversity of 10 cm was higher than that of 20 cm and 30 cm. The abundance of Acidobacteria, Proteobacteria, Actinomycetes, Ascomycetes and Basidiomycetes varies significantly with depth. What’s more, soil pH increased significantly with depth increasing, while SOM, AN, VWC and ST decreased significantly with increasing depth. In addition, Depth, TOC and AN had significant impact on the bacterial and fungi communities (p < 0.05). ConclusionsSpatial heterogeneity (depth) is more important than temporal (month) in predicting changes in microbial community composition and soil properties. And the abundance of Acidobacteria, Proteobacteria, Actinomycetes, Ascomycetes and Basidiomycetes varies significantly with depth. We speculate that SOM and VWC account for the abundance variations of Acidobacteria and Proteobacteria, and pH cause the abundance changes of Actinomycetes, Ascomycetes and Basidiomycota.


Sign in / Sign up

Export Citation Format

Share Document