scholarly journals The In-Situ Quantification of Structural Radiation Damage in Zircon Using Laser-Induced Confocal Photoluminescence Spectroscopy

Minerals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 83
Author(s):  
Christoph Lenz ◽  
Elena Belousova ◽  
Gregory R. Lumpkin

We present a new methodology for laser-induced steady-state photoluminescence (PL) spectroscopy of Dy3+ that aims at a direct quantification of the amorphous fraction fa present in zircon (ZrSiO4), which undergoes a transition from a crystalline to a metamict state due to cumulative self-irradiation damage caused by the radioactive decay of substituted U and Th. Using state-of-the-art confocal spectrometers attached to optical microscopes, measurements may be performed non-destructively on the micrometre length-scale with the option to visualize radiation-damage patterns as revealed by hyperspectral PL maps. Zircon from the Ratnapura district (Sri Lanka, ~520 Ma), was used as reference material to substantiate the applicability of the proposed method. The accumulation of radiation damage in this material was investigated in detail and obtained fa values correlate with calculated α-doses in accordance to the direct impact model reported variously in the literature. The impact of chemically-induced, heterogeneous broadening of Raman and Dy3+ emission spectral bands is discussed on two examples from Mt. Malosa district, Malawi. A mean weighted U-Pb isotope age of 111 ± 1 Ma (pegmatitic-type) and a discordia age of 112 ± 1.6 Ma (hydrothermal-type) as obtained by LA-ICP-MS confirm their close genetic and temporal relationship. Studied zircon examples demonstrate that the amount of radiation damage present may have a substantial effect on the precision of LA-ICP-MS ages, but cannot be considered an exclusive cause for bias of obtained isotope ages.

2020 ◽  
Author(s):  
Ali Fallah ◽  
Sungmin O ◽  
Rene Orth

Abstract. Precipitation is a crucial variable for hydro-meteorological applications. Unfortunately, rain gauge measurements are sparse and unevenly distributed, which substantially hampers the use of in-situ precipitation data in many regions of the world. The increasing availability of high-resolution gridded precipitation products presents a valuable alternative, especially over gauge-sparse regions. Nevertheless, uncertainties and corresponding differences across products can limit the applicability of these data. This study examines the usefulness of current state-of-the-art precipitation datasets in hydrological modelling. For this purpose, we force a conceptual hydrological model with multiple precipitation datasets in > 200 European catchments. We consider a wide range of precipitation products, which are generated via (1) interpolation of gauge measurements (E-OBS and GPCC V.2018), (2) combination of multiple sources (MSWEP V2) and (3) data assimilation into reanalysis models (ERA-Interim, ERA5, and CFSR). For each catchment, runoff and evapotranspiration simulations are obtained by forcing the model with the various precipitation products. Evaluation is done at the monthly time scale during the period of 1984–2007. We find that simulated runoff values are highly dependent on the accuracy of precipitation inputs, and thus show significant differences between the simulations. By contrast, simulated evapotranspiration is generally much less influenced. The results are further analysed with respect to different hydro-climatic regimes. We find that the impact of precipitation uncertainty on simulated runoff increases towards wetter regions, while the opposite is observed in the case of evapotranspiration. Finally, we perform an indirect performance evaluation of the precipitation datasets by comparing the runoff simulations with streamflow observations. Thereby, E-OBS yields the best agreement, while furthermore ERA5, GPCC V.2018 and MSWEP V2 show good performance. In summary, our findings highlight a climate-dependent propagation of precipitation uncertainty through the water cycle; while runoff is strongly impacted in comparatively wet regions such as Central Europe, there are increasing implications on evapotranspiration towards drier regions.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4899 ◽  
Author(s):  
Georg Brunnhofer ◽  
Alexander Bergmann ◽  
Andreas Klug ◽  
Martin Kraft

An in-line holographic particle counter concept is presented and validated where multiple micrometer sized particles are detected in a three dimensional sampling volume, all at once. The proposed PIU is capable of detecting holograms of particles which sizes are in the lower μ m- range. The detection and counting principle is based on common image processing techniques using a customized HT with a result directly relating to the particle number concentration in the recorded sampling volume. The proposed counting unit is mounted ontop of a CNM for comparison with a commercial TSI-3775 CPC. The concept does not only allow for a precise in-situ determination of low particle number concentrations but also enables easy upscaling to higher particle densities (e.g., > 30 . 000 # c c m ) through its linear expandability and option of cascading. The impact of coincidence at higher particle densities is shown and two coincidence correction approaches are presented where, at last, its analogy to the coincidence correction methods used in state-of-the-art CPCs is identified.


2016 ◽  
Vol 2016 ◽  
pp. 1-50 ◽  
Author(s):  
Jason E. French ◽  
David F. Blake

Over the last two decades, conspicuously “biogenic-looking” corrosion microtextures have been found to occur globally within volcanic glass of thein situoceanic crust, ophiolites, and greenstone belts dating back to ~3.5 Ga. These so-called “tubular” and “granular” microtextures are widely interpreted to representbona fidemicrobial trace fossils; however, possible nonbiological origins for these complex alteration microtextures have yet to be explored. Here, we reevaluate the origin of these enigmatic microtextures from a strictly nonbiological standpoint, using a case study on submarine glasses from the western North Atlantic Ocean (DSDP 418A). By combining petrographic and SEM observations of corrosion microtextures at the glass-palagonite interface, considerations of the tectonic setting, measurement of U and Th concentrations of fresh basaltic glass by ICP-MS, and theoretical modelling of the present-day distribution of radiation damage in basaltic glass caused by radioactive decay of U and Th, we reinterpret these enigmatic microtextures as the end product of the preferential corrosion/dissolution of radiation damage (alpha-recoil tracks and fission tracks) in the glass by seawater, possibly combined with pressure solution etch-tunnelling. Our findings have important implications for geomicrobiology, astrobiological exploration of Mars, and understanding of the long-term breakdown of nuclear waste glass.


2020 ◽  
Author(s):  
Ali Fallah Maraghi ◽  
Sungmin Oh ◽  
Rene Orth

<p>Precipitation is a crucial variable for hydro-meteorological applications. Unfortunately, rain gauge measurements are sparse and unevenly distributed, which substantially hampers the use of in-situ precipitation data in many regions of the world. The increasing availability of high-resolution gridded precipitation products presents a valuable alternative, especially over gauge-sparse regions. Nevertheless, uncertainties and corresponding differences across products can limit the applicability of these data. This study examines the usefulness of current state-of-the-art precipitation datasets in hydrological modeling. For this purpose, we force a conceptual hydrological model with multiple precipitation datasets in >200 European catchments. We consider a wide range of precipitation products, which are generated via (1) interpolation of gauge measurements (E-OBS and GPCC V.2018), (2) data assimilation into reanalysis models (ERA-Interim, ERA5, and CFSR) and (3) combination of multiple sources (MSWEP V2). For each catchment, runoff and evapotranspiration simulations are obtained by forcing the model with the various precipitation products. Evaluation is done at the monthly time scale during the period of 1984-2007. We find that simulated runoff values are highly dependent on the accuracy of precipitation inputs, and thus show significant differences between the simulations. By contrast, simulated evapotranspiration is generally much less influenced. The results are further analysed with respect to different hydro-climatic regimes. We find that the impact of precipitation uncertainty on simulated runoff increases towards wetter regions, while the opposite is observed in the case of evapotranspiration. Finally, we perform an indirect performance evaluation of the precipitation datasets by comparing the runoff simulations with streamflow observations. Thereby, E-OBS yields the best agreement, while furthermore ERA5, GPCC V.2018 and MSWEP V2 show good performance. In summary, our findings highlight a climate-dependent propagation of precipitation uncertainty through the water cycle; while runoff is strongly impacted in comparatively wet regions such as Central Europe, there are increasing implications on evapotranspiration towards drier regions.</p>


2020 ◽  
Vol 12 (4) ◽  
pp. 451-456
Author(s):  
Hiwa Mohammad Qadr ◽  
◽  
Ari Maghdid Hamad ◽  

The aim of this work to investigate the impact of the radiation damage in the materials by the proton energy irradiation. The damage parameter used in the evaluation is displacement per atom (DPA) in material as a function of proton energy. Stopping and Range of Ions in Matter (SRIM) code was used to calculate the total vacancy and the number of atomic displacements based on the Norgett-Robinson-Torrens model by difference energies for proton irradiation damage. The option of this code was calculated by using Ion Distribution and Quick Calculation of Damage (Kinchin-Pease) for Fe and Cu target and also Full damage cascade (F-C) was chosen for only Fe. The result is that, the prediction of the F-C model are higher than the K-P calculation. Comparisons has been made with an international standard definition of DPA.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


Author(s):  
Charles W. Allen

With respect to structural consequences within a material, energetic electrons, above a threshold value of energy characteristic of a particular material, produce vacancy-interstial pairs (Frenkel pairs) by displacement of individual atoms, as illustrated for several materials in Table 1. Ion projectiles produce cascades of Frenkel pairs. Such displacement cascades result from high energy primary knock-on atoms which produce many secondary defects. These defects rearrange to form a variety of defect complexes on the time scale of tens of picoseconds following the primary displacement. A convenient measure of the extent of irradiation damage, both for electrons and ions, is the number of displacements per atom (dpa). 1 dpa means, on average, each atom in the irradiated region of material has been displaced once from its original lattice position. Displacement rate (dpa/s) is proportional to particle flux (cm-2s-1), the proportionality factor being the “displacement cross-section” σD (cm2). The cross-section σD depends mainly on the masses of target and projectile and on the kinetic energy of the projectile particle.


2011 ◽  
Author(s):  
Percy L. Donaghay ◽  
Jan Rines ◽  
James Sullivan
Keyword(s):  

Proceedings ◽  
2018 ◽  
Vol 2 (10) ◽  
pp. 565
Author(s):  
Nguyen Nguyen Vu ◽  
Le Van Trung ◽  
Tran Thi Van

This article presents the methodology for developing a statistical model for monitoring salinity intrusion in the Mekong Delta based on the integration of satellite imagery and in-situ measurements. We used Landsat-8 Operational Land Imager and Thermal Infrared Sensor (Landsat- 8 OLI and TIRS) satellite data to establish the relationship between the planetary reflectance and the ground measured data in the dry season during 2014. The three spectral bands (blue, green, red) and the principal component band were used to obtain the most suitable models. The selected model showed a good correlation with the exponential function of the principal component band and the ground measured data (R2 > 0.8). Simulation of the salinity distribution along the river shows the intrusion of a 4 g/L salt boundary from the estuary to the inner field of more than 50 km. The developed model will be an active contribution, providing managers with adaptation and response solutions suitable for intrusion in the estuary as well as the inner field of the Mekong Delta.


Sign in / Sign up

Export Citation Format

Share Document