scholarly journals Stability of Cu-Sulfides in Submarine Tailing Disposals: A Case Study from Repparfjorden, Northern Norway

Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 169 ◽  
Author(s):  
Yulia Mun ◽  
Sabina Strmić Palinkaš ◽  
Matthias Forwick ◽  
Juho Junttila ◽  
Kristine Bondo Pedersen ◽  
...  

Mine tailings that were produced during the exploitation of the Ulveryggen siliciclastic sediment-hosted Cu deposit in northern Norway were disposed into the inner part of Repparfjorden from 1972 to 1978/1979. This study focuses on the mineralogy and geochemistry of the submarine mine tailings and underlying natural marine sediments from the inner part of Repparfjorden, as well as on the primary Ulveryggen ore. The ore mineralization from the neighboring Nussir carbonate sediment-hosted Cu deposit was studied too, due to the forthcoming mining of both deposits. Bornite and chalcopyrite are the major Cu-sulfides, and are characterized by low concentrations of potentially toxic elements including Cd, Hg, and As. The tailing material occupies the uppermost 9 cm of Repparfjorden sediments. It is characterized by predomination of a silty component with elevated Cu (up to 747.7 ppm), Ni (up to 87 ppm), and Cr (up to 417 ppm) concentrations. The high Cu concentration is related to the deposition of mine tailings. In contrast, Ni and Cr concentrations are close to those in naturally occurring stream sediments from the feeding river, Repparfjordelva, reflecting the compatibility of these elements with hosting mafic volcanics, which are widely spread in the Repparfjord Tectonic Window. Copper in the uppermost part of the sediments is bound to the acid-soluble fraction while Ni and Cr are bound to the residual fraction. Artificial placement of large masses of fine-grained material, i.e., smothering, resulted in a diminished biological activity and/or physical distortion of mostly benthic fauna, which was reflected in total organic carbon (TOC) values as low as 0.15% in the uppermost strata. Sulfide minerals are found both in natural marine sediments and in the mine tailings. They are generally well-preserved with an exception for chalcopyrite from the uppermost part of the submarine tailing, which shows signs of incipient weathering. Thermodynamic modeling confirmed that redox potential and pH are important factors in the weathering of sulfides. Available ligands contribute to the Cu speciation. In near-neutral to slightly alkaline conditions a presence of carbonates can lead to the mobilization of Cu in form of CuCO3 complexes.

2007 ◽  
Vol 44 (4) ◽  
pp. 473-489 ◽  
Author(s):  
M Haneef-Mian ◽  
Ernest K Yanful ◽  
Robert Martinuzzi

The present study gives details of a methodology for estimating the critical shear stress for erosion of mine tailings and other naturally occurring cohesive sediments. Erosion of a cohesive sediments bed occurs when the critical shear stress is exceeded to break the interparticle bond. Experiments were conducted in a 30 cm diameter laboratory column and calibrated using laser Doppler anemometry. The results showed that the erosion pattern of mine tailings particles was similar to those of fine-grained cohesive sediments. A power-law relation of the form E = α[(τ – τcr)/τcr]n is suggested for mine tailings, where E is the erosion rate, α is a coefficient, τ is the shear stress, τcr is the critical shear stress, and n is an exponent. The computed values of α, n, and τcr in the power-law equation were found to be comparable to values derived from experiments in a rotating circular flume. The derived expression for rate of erosion may be incorporated in resuspension and transport models for fine mine tailings of a similar nature.Key words: mine tailings, laser Doppler velocimetry, wall shear stresses, critical shear stress for erosion, erosion – shear stress relationship.


Author(s):  
Horst G. Brandes

Permeability values for a range of fine-grained deep-sea sediments are presented and evaluated in terms of index properties such as plasticity, grain size and carbonate content. It is found that whereas clay-rich sediments have similar permeabilities to those of equivalent land-based fine-grained soils, the presence of volcanic, carbonate and other non-clay fractions tends to increase permeability somewhat. Volcanic silty-clayey soils from Hawaii have comparable permeability values, although they can be slightly more permeable.


1973 ◽  
Vol 1973 (1) ◽  
pp. 205-213 ◽  
Author(s):  
M. Tissier

ABSTRACT Hydrocarbons spilled on the sea may, naturally or by sinking agent, settle on the sea bed and pollute marine muds which are the substratum of the benthic fauna and flora. They may be absorbed by these organisms which are the basis of the nutrition for a large part of the aquatic fauna. This hydrocarbon pollutants will enter by this way in the marine food chain and raise the problem of long term toxicity. Therefore it is important to measure the quantity of hydrocarbons in the marine sediments in order to know the level of pollution. We must, however, be able to make the difference between indigenous hydrocarbons and crude-oil derived hydrocarbons. Both contain, n and iso-alkanes, cyclo-alkanes and aromatics, but their quantity, the percentage of each type of compounds and the distribution of some specific molecules are often very particular. A detailed analysis of the chloroform extract of the sediment by chromatography, mass spectrometry and U. V. fluorescence can discriminate between unpolluted and polluted sediments even in the case of low level pollution. The samples which have been analysed, were collected on the French coast of the English channel in Normandie and in the Seine Bay. It has been noted in the unpolluted samples a higher percentage of heavy products (resins and asphaltènes), a more important odd carbon dominance in the n-alkanes distribution than in the polluted ones. The aromatic fraction of the indigenous hydrocarbons is mainly composed of polycyclic aromatic hydrocarbons without alkyl chains whereas polluted samples show many types of alkylaromatics.


2015 ◽  
Vol 39 (1) ◽  
pp. 20140283 ◽  
Author(s):  
Mohammad R. H. Gorakhki ◽  
Christopher A. Bareither

2012 ◽  
Vol 66 (8) ◽  
pp. 1641-1646 ◽  
Author(s):  
L. Arellano-García ◽  
A. González-Sánchez ◽  
H. Van Langenhove ◽  
A. Kumar ◽  
S. Revah

The aim of this paper was to evaluate the performance of biotrickling filters (BTFs) for treating low concentrations of dimethyl disulfide (DMDS), using different bacterial consortia adapted to consume reduced sulfur compounds under alkaline (pH ≈ 10) or neutral (pH ≈ 7) conditions. Solubility experiments indicated that the partition of DMDS in neutral and alkaline mineral media was similar to the value with distilled water. Respirometric assays showed that oxygen consumption was around ten times faster in the neutrophilic as compared with the alkaliphilic consortium. Batch experiments demonstrated that sulfate was the main product of the DMDS degradation. Two laboratory-scale BTFs were implemented for the continuous treatment of DMDS in both neutral and alkaline conditions. Elimination capacities of up to 17 and 24 gDMDS m−3 h−1 were achieved for the alkaliphilic and neutrophilic reactors with 100% removal efficiency after an initial adaptation and biomass build-up.


2018 ◽  
Author(s):  
Jean-Baptiste P. Koehl ◽  
Steffen G. Bergh ◽  
Klaus Wemmer

Abstract. Well-preserved fault gouge along brittle faults in Paleoproterozoic, volcano-sedimentary rocks of the Raipas Group exposed in the Alta-Kvænangen tectonic window in northern Norway yielded latest Mesoproterozoic (ca. 1050 ± 15 Ma) to mid Neoproterozoic (ca. 825–810 ± 18 Ma) K/Ar ages. Pressure-temperature estimates from microtextural and mineralogy analyses of fault-rocks indicate that brittle faulting may have initiated at depth of 5–10 km during the opening of the Asgard Sea in the latest Mesoproterozoic-early Neoproterozoic (ca. 1050–945 Ma), and continued with a phase of shallow faulting during to the opening of the Iapetus Ocean-Ægir Sea and the initial breakup of Rodinia in the mid Neoproterozoic (ca. 825–810 Ma). The predominance and preservation of synkinematic smectite and subsidiary illite in cohesive and non-cohesive fault-rocks indicate that Paleoproterozoic basement rocks of the Alta-Kvænangen tectonic window remained at shallow crustal levels (


Sign in / Sign up

Export Citation Format

Share Document