scholarly journals A Novel Pneumatic Planar Magnetic Separator for Magnetite Beneficiation: A Focus on Flowsheet Configuration

Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 759 ◽  
Author(s):  
Emmanuel Baawuah ◽  
Christopher Kelsey ◽  
Jonas Addai-Mensah ◽  
William Skinner

In our previous studies, we investigated the performance of a novel pneumatic planar magnetic separator (PMS) for the dry beneficiation of a selected magnetite ore. In the present study, we have extended the studies on the PMS with the focus on investigating how various PMS processing flowsheet configurations influence its performance. The outcomes were subsequently compared with those of a Davis tube recovery (DTR) tester. The study demonstrated that the use of PMS in the dry beneficiation of magnetite ores is feasible, and operating the PMS in different flowsheet configurations positively influences the magnetite concentrate grade and purity. Finally, the study showed that the PMS performance compares well with that of DTR and can potentially replace DTR in operations that are carried out in arid regions.

2020 ◽  
Vol 17 (34) ◽  
pp. 700-710
Author(s):  
Kanat Sh CHOKIN ◽  
Abdraman I YEDILBAYEV ◽  
Baimurat A YEDILBAYEV ◽  
Vladimir D YUGAY

The relevance of the paper is that dry magnetic separation (DMS) is the main beneficiation method of magnetite ores. The lack of efficient industrial-grade machines and apparatus for separating fine-grained magnetite ores means that DMS is used mainly as a pre-concentration operation for fairly large classes. The aim of the research is to study the possibility of using a new magnetic separator model in the process of dry beneficiation of magnetite ore from the Bapy deposit. This paper presents theoretical and experimental studies of a new model of a magnetic separator. The mathematical modeling of the magnetic separation process of the device was carried out to evaluate the parameters in accordance with which a laboratory separator was subsequently manufactured. For the experimental study of the properties of this magnetic system, a laboratory magnetic separator was built. The possibility of using a new magnetic separator in the process of dry beneficiation of magnetite ore from the Bapy deposit was investigated. The industrial scheme being implemented consists in ore crushing and two stage dressing on dry drum magnetic separators. The study of beneficiation indicators of the magnetic separator was carried out using iron ore of the Bapy deposit, which is mono-mineral magnetite. For the study, mixtures of the minus 0.1 mm class were selected with the iron content α = 50% and α = 40%. As a result of the research, beneficiation indicators were obtained on a laboratory scale. Therefore, the improvement of the beneficiation scheme is reduced to the isolation of a small product and its subsequent beneficiation using a new model of magnetic separator. Thus, the presented magnetic separator is suitable for dry processing of crushed magnetite ore.


2020 ◽  
Vol 10 (2) ◽  
pp. 116-125
Author(s):  
Elif Aranci Öztürk ◽  
Mustafa Boyrazli ◽  
Mehmet Deniz Turan ◽  
Murat Erdemoğlu

Aim: In this work, the effect of milling time on the mechanical alloying of the mixture containing the magnetite concentrate and biomass waste was investigated. Materials and Methods: The ore’s grade consisting of hematite and magnetite minerals was increased from 49.87% Fe to 67.29% Fe using the low intensity wet magnetic separator. Biomass waste which was supplied from ÇAYKUR black tea facilities, used as a carbon source was subjected to carbonization processes at 800°C for 1440 min. After the carbonization process, the carbon and sulphur contents of the biomass were measured as 94.68% and 0.03%, respectively. For the mechanical alloying process, a mixture consisting of magnetite concentrate with a grain size of -45 μm and biomass which was added two times the amount of carbon required for the reduction of magnetite to metallic iron was used. Result: After the mechanical alloying process which was carried out at different times, it was observed in the particle size analysis that the particle size of 90% of the mixture was reduced to about 4 μm. In SEM (Scanning Electron Microscopy) images, cube-like particles along with the spherical particles were observed depending on the mechanical alloying times. After 45 minutes of alloying, it was observed that the carbonized product milled together with magnetite concentrate was partially integrated into the crystal structure. Conclusion: The carbonized tea plant waste milled together with magnetite concentrate was partially integrated into the crystal structure. And the mechanical alloying provide to increase in the specific surface area in parallel with the grain size decrease in the study. Thus, in the later stage of the study, the milled powder acquired more ability to react.


Author(s):  
Sergei Mamonov ◽  

Introduction. In the magnetite lime-skarn Peschanskoe deposit, the Zapadno-Peschanskaya ore deposit is distinguished, which differs from other ore bodies by an increased content of copper and precious metals. Due to the fact that the technology of processing magnetite ores of the Peschanskoe deposit at the enterprise of the subsurface user is configured to receive only iron concentrate, the development of a comprehensive technology for processing sulfide-magnetite ores is an urgent task. Research aim is to study the material composition and sulfide-magnetite ore concentration of the ZapadnoPeschanskaya ore deposit and to develop a comprehensive technology for its processing. The technology should ensure gold-containing, copper and iron concentrates production. Research methods consisted in studying the material composition of sulfide-magnetite ore by means of quantitative chemical analysis using Arcos emission spectrometer with inductively coupled plasma, Solaar atomic absorption spectrometer, CS-800sulfur analyzer, Titration Excellence T-70 automatic titration system, and Specord 250 Plus scanning spectrophotometer; chemical phase analysis for the forms of iron, copper, gold, silver and sulfur compounds; mineralogical analysis using the Axio Imager A1m optical microscope and Mineral C7 automated analyzer. Technological research was carried out by various concentration methods: X-ray radiometric separation on the SRF1-100L separator; dry magnetic separation on the PBS-90/25 magnetic separator; gravity on the KC-MD3 centrifugal concentrator and the SKL-0.2 concentration table; flotation on the FMP-L series flotation machines; wet magnetic separation on the electromagnetic separator EBM-32/20. Scope of results. The present research result can be used at complex sulfide-magnetite ores processing. Conclusions. The results of the material composition research and technological properties of the sulfidemagnetite ore of the Zapadno-Peschanskaya deposit of the Peschanskoe skarnovo-magnetite deposit are presented. It is established that the researched ore can be efficiently processed using a complex gravityflotation-magnetic technology, which allows to obtain: gravity gold-containing concentrate with a mass fraction of gold of 50 g/t at recovery of 27%; copper concentrate with a mass fraction of 23.71%, gold – 18.9 g/t and silver – 60.0 g/t when extracted, respectively, 93.6%, 42.9% and 54.6%; magnetite concentrate with a mass fraction of iron 66.5%, sulfur 0.7% with the recovery of total iron 76.6%.


2021 ◽  
pp. 8-14
Author(s):  
A. E. Pelevin ◽  
N. A. Sytykh

This article covers the applications of fine hydraulic screening for the staged separation of titanium-magnetite concentrates upstream of the last grinding stage and provides an evaluation of its process efficiency options for the Kachkanarsky GOK. In all screen operating modes tested, the mass fraction of iron in the undersize was higher than its mass fraction in the oversize, but failed to reach the target value for the concentrate of 61 %. Therefore, the undersize must be subjected to additional magnetic concentration. Staged separation of the concentrate by fine screening allows either to improve concentrator performance (by up to 10 %) or to increase the concentration process indicators without changing the grinding equipment volume. In this case, the undersize yield averages 55 %. The use of the staged concentrate separation technology with fine screening at constant process parameters and steady factory performance allows reducing the tertiary mill volume in relative terms, not exceeding half of the undersize yield from the operation, which shall be 65–70 %. The minimum permissible values of the mass fraction of iron and of the –0.071 mm class in the screen feed and the undersize must be ensured for obtaining the required concentrate grade. The values of these indicators depend on the material composition of the ore and the concentration process used.


2012 ◽  
Vol 454 ◽  
pp. 363-368
Author(s):  
Zhi Tao Yuan ◽  
Lei Liu ◽  
Yue Xin Han

The wet pre-concentration of comminuted hematite in high-pressure grinding roller was studied, using the cylindrical ferromagnetic medium in a high gradient magnetic separator. The effects of various factors including rod diameter, rod gap and background magnetic field intensity (BMFI) on the performances of pre-concentration in different size feeds are emphatically investigated. The results showed that as the rod diameter increased, the rod gap decreased and the BMFI increased, the tailings grade and the tailings yield reduced, but the concentrates recovery raised. This variation was regardless of the feed size distribution. After the classifying pre-concentration, the overall concentrate grade increases by 9.56 percentage points and the concentrate recovery is up to the 82.67% with a tailing grade of 10.68% and a tailing yield of 40.31%. Compared with the classifying pre-concentration, the full size pre-concentration produced a concentrate with a lower grade only increased by 6.61 percentage points and the higher recovery of 92.32%. The tailings, with a lower yield of only 26.62% and a lower grade of 7.39%, was mainly produced from the fine feed. The coarse feed in the full size pre-concentration was not separated effectively.


2020 ◽  
Vol 40 (1) ◽  
pp. 7-16
Author(s):  
Liang Chang Shi ◽  
Nan Sheng Wang ◽  
Gan Cheng

Using the MagNet software package, a permanent magnetic circuit was simulated and a sectorially-spliced magnetic system was designed. Consequently, a new roller permanent magnetic separator with different magnetic field intensities in each roller was developed. The modular structural design allows fine-grained minerals with different magnetic susceptibility to be separated in one pass, according to their different processing characteristic. Steel slag, selected from a factory, was crushed, ground and sieved into different particle size ranges for the single-factor magnetic separation experiments. It was determined that the optimum value ranges for the particle size, magnetic separation distance and rotating frequency were 0.15 mm-0.3 mm, 10 mm-12 mm, 40 Hz~60Hz, respectively; using the chosen parameter values of 0.2mm, 11mm, and 40Hz, the concentrate recovery and concentrate grade of the new separation technology reached up to 52.78% and 64.74%, in comparisson with the existing technology. Thus, it was demonstrated that the self-developed separation technology has the potential to improve the iron recovery of the fine-grained steel slag.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 955
Author(s):  
Emmanuel Baawuah ◽  
Christopher Kelsey ◽  
Jonas Addai-Mensah ◽  
William Skinner

In our previous studies, we demonstrated the performance of novel superfine crusher and pneumatic planar magnetic separator as energy-efficient technologies for dry processing of magnetite ores. The present study investigates the economic and socio-environmental benefits of applying these technologies in conceptual dry magnetite ore processing flowsheet. The outcome of the study is compared with that of a conceptual wet processing flowsheet for the same ore. The cost estimations used are based on the Brook Hunt C1 methodology whilst revenue estimations are based on the Platts Iron Ore Index specification. The demonstrated economic and socio-environmental benefits show that dry processing flowsheet offers significant energy and cost savings and improved revenue generation compared with the wet process flowsheet. These findings are vital to the magnetite industry, particularly in water- and energy-scarce regions as a benchmark for future studies aimed at deepening and expanding the knowledge base of dry beneficiation of magnetite ores.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1078
Author(s):  
Nickolaj N. Rulyov ◽  
Lev O. Filippov ◽  
Dmytro Y. Sadovskyi ◽  
Vitalina V. Lukianova

Magnetite is an essential iron-bearing mineral. The primary method of magnetite ore beneficiation involves successive steps of crushing, grinding, and magnetic separation. Reverse cationic flotation is used at the final stage to remove silicate and aluminosilicate impurities from the magnetite concentrate and reduce silica content to 1–3%, depending on metallurgical processing route (electrometallurgy, direct iron reduction). In view of the stringent demands of the magnetite concentrate grade, before flotation, the ore is currently routinely ground down to a particle size below 35 µm, and magnetite particles are ground to a size below 10 µm. This significantly reduces the efficiency of flotation and increases iron loss in the tailings due to the hydraulic report in froth being up to 15–25%. Combined microflotation (CMF) looks to be a promising method of increasing fine-particle flotation efficiency, as it uses relatively small amounts of microbubbles alongside conventional coarse bubbles. Microbubbles act as flotation carriers, collecting gangue particles on their surface, which then coarse bubbles float. The purpose of this study is to explore the effectiveness of CMF for processing a model mixture that contained magnetite particles smaller than 10 µm and glass beads (Ballotini) below 37 µm in size when the initial iron content in the mixture was 63.76%. Commercial reagent Lilaflot 821M was used as both collector and frother. The flotation procedure, which included the introduction of 15 g/t of the collector before the start of flotation, and the addition of 5 g/t of the collector in combination with a microbubble dose of 0.018 m3/t 6 min after starting flotation, ensured an increase in the concentrate grade to 67.63% Fe and iron recovery of 91.16%.


2020 ◽  
Vol 156 ◽  
pp. 106483
Author(s):  
Emmanuel Baawuah ◽  
Christopher Kelsey ◽  
Jonas Addai-Mensah ◽  
William Skinner

2003 ◽  
Vol 12 (2) ◽  
pp. 63-69 ◽  
Author(s):  
Xiong Dahe

SLon vertical ring and pulsating high gradient magnetic separator is a new generation of a highly efficient equipment for processing weakly magnetic minerals[1–3]. It possesses advantages of a large beneficiation ratio, high recovery, a matrix that cannot easily be blocked and excellent performance. In the technical reform of upgrading the iron concentrate in Qi Dashan Mineral Processing Plant of Anshan Iron and Steel Company in 2001 to 2002, ten SLon-1750 magnetic separators were successfully applied to process oxidized iron ores. The iron concentrate of the plant was upgraded from 63.22% Fe to 67.11% Fe. The overall results of the reformed flowsheet are: the feed grade 29.84% Fe, the iron concentrate grade 67.11% Fe, the tailings grade 11.27% Fe, and the iron recovery 74.79%, which set up a new historical record of the plant.


Sign in / Sign up

Export Citation Format

Share Document