Fine hydraulic screening for staged separation of titanium-magnetite concentrate

2021 ◽  
pp. 8-14
Author(s):  
A. E. Pelevin ◽  
N. A. Sytykh

This article covers the applications of fine hydraulic screening for the staged separation of titanium-magnetite concentrates upstream of the last grinding stage and provides an evaluation of its process efficiency options for the Kachkanarsky GOK. In all screen operating modes tested, the mass fraction of iron in the undersize was higher than its mass fraction in the oversize, but failed to reach the target value for the concentrate of 61 %. Therefore, the undersize must be subjected to additional magnetic concentration. Staged separation of the concentrate by fine screening allows either to improve concentrator performance (by up to 10 %) or to increase the concentration process indicators without changing the grinding equipment volume. In this case, the undersize yield averages 55 %. The use of the staged concentrate separation technology with fine screening at constant process parameters and steady factory performance allows reducing the tertiary mill volume in relative terms, not exceeding half of the undersize yield from the operation, which shall be 65–70 %. The minimum permissible values of the mass fraction of iron and of the –0.071 mm class in the screen feed and the undersize must be ensured for obtaining the required concentrate grade. The values of these indicators depend on the material composition of the ore and the concentration process used.

Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 335 ◽  
Author(s):  
Antonio Luca ◽  
Oltmann Riemer

Microinjection moulding has been developed to fulfil the needs of mass production of micro components in different fields. A challenge of this technology lies in the downscaling of micro components, which leads to faster solidification of the polymeric material and a narrower process window. Moreover, the small cavity dimensions represent a limit for process monitoring due to the inability to install in-cavity sensors. Therefore, new solutions must be found. In this study, the downscaling effect was investigated by means of three spiral geometries with different cross sections, considering the achievable flow length as a response variable. Process indicators, called “process fingerprints”, were defined to monitor the process in-line. In the first stage, a relationship between the achievable flow length and the process parameters, as well as between the process fingerprints and the process parameters, was established. Subsequently, a correlation analysis was carried out to find the process indicators that are mostly related to the achievable flow length.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mircea Teodor Nechita ◽  
Gabriel Dan Suditu ◽  
Adrian Cătălin Puițel ◽  
Elena Niculina Drăgoi

AbstractIn this work, the active carbon adsorption and TiO2/UV decolorization of black liquor were studied through experimental analysis (planned using Design of Experiments), modelling and optimization (with Response Surface Method and Differential Evolution). The aim is to highlight the importance of optimization methods for increasing process efficiency. For active carbon adsorption, the considered process parameters were: quantity of active carbon, dilution, and contact time. For TiO2 promoted photochemical decolorization the process parameters were: TiO2 concentration, UV path length and irradiation time. The determined models had an R squared of 93.82% for active carbon adsorption and of 92.82% for TiO2/UV decolorization. The optimization of active carbon resulted in an improvement from 83.08% (corresponding to 50 g/L quantity of active carbon, 30 min contact time and 200 dilution) to 100% (corresponding to multiple combinations). The optimization of TiO2/UV decolorization indicated an increase of efficiency from 36.63% (corresponding to 1 g/L TiO2 concentration, 60 min irradiation time and 5 cm UV path length) to 46.83% (corresponding to 0.4 g/L TiO2 concentration, 59.99 min irradiation time and 2.85 cm UV path length). These results show that the experiments and the subsequent standard RSM optimization can be further improved, leading to better performance.


2018 ◽  
Vol 1 (1) ◽  
pp. 539-544
Author(s):  
Tomasz Rydzkowski ◽  
Iwona Michalska-Pożoga ◽  
Marcin Szczepanek ◽  
Vijay Kumar Thakur

Abstract The search for new polymer processing ways has become necessary due to the rapidly growing technology and market needs. The time of manufacturing products, as well as the impact of process parameters and the design itself on the properties of materials have become very important. Therefore, the creation of assumptions allowing the construction of a compact device whose construction will allow, for example, high process efficiency at low screw rotational speeds or a high degree of material homogenisation, is expected by the market. However, this requires the design of new or continuous modifications and improvements to existing structures.


2017 ◽  
Vol 3 (5) ◽  
pp. 778-792 ◽  
Author(s):  
Hang Shi ◽  
Elodie V. Pasco ◽  
Volodymyr V. Tarabara

A critical analysis of how concentration process parameters impact virus recovery during primary concentration of water samples.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Pradeep Lall ◽  
Amrit Abrol ◽  
Nakul Kothari ◽  
Benjamin Leever ◽  
Scott Miller

Abstract Traditionally, printed circuit assemblies have been fabricated through a combination of imaging and plating-based subtractive processes involving the use of photo-exposure followed by baths for plating and etching in order to form the necessary circuitry on rigid and flexible laminates. The emergence of a number of additive technologies presents an opportunity for the development of processes for manufacturing of flexible substrates by utilizing mainstream additive processes. Aerosol-jet printing is capable of printing lines and spaces below 10 μm in width. The aerosol-jet system also supports a wide variety of materials, including nanoparticle inks, screen-printing pastes, conductive polymers, insulators, adhesives, and biological matter. The adoption of additive manufacturing for high-volume commercial fabrication requires an understanding of the print consistency and electrical mechanical properties. Little literature that addresses the effect of varying sintering time and temperature on the shear strength and resistivity of the printed lines exists. In this study, the effect of process parameters on the resultant line consistency and mechanical and electrical properties has been studied. Print process parameters studied include sheath rate, mass flow rate, nozzle size, substrate temperature, and chiller temperature. Properties include resistance and shear load to failure of the printed electrical line as a function of varying sintering time and temperature. The aerosol-jet machine has been used to print interconnects. Printed samples have been exposed to different sintering times and temperatures. The resistance and shear load to failure of the printed lines have been measured. The underlying physics of the resultant trend was then investigated using elemental analysis and scanning electron microscopy. The effect of line consistency drift over prolonged runtimes has been measured for up to 10 h of runtime. The printing process efficiency has been gaged as a function of the process capability index (Cpk) and process capability ratio (Cp). Printed samples were studied offline utilizing optical profilometry in order to analyze the consistency within the line width, height, and resistance, and shear load to study the variance in electrical and mechanical properties over time.


Minerals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 426
Author(s):  
Renmin Li ◽  
Tao Liu ◽  
Yimin Zhang ◽  
Jing Huang

In this paper, a novel K2SO4/KCl composite roasting additive was used to extract vanadium from vanadium–titanium magnetite concentrate. Further, the mechanism of K2SO4/KCl for extracting vanadium was studied. The results indicate that the vanadium leaching efficiency reached 82.04%, an increase of 7.43% compared to that of single K2SO4 and 10.05% compared to single KCl under the following conditions: a total dosage of K2SO4/KCl of 7 wt % with a mass ratio of 6/4, a roasting temperature of 950 °C, a roasting time of 1 h, a leaching temperature of 95 °C, a sulfuric acid concentration of 10% (v/v: volume percentage), and a leaching time of 1.5 h with a liquid-to-solid ratio of 3 mL/g. Moreover, crystal chemistry analyses indicated that the essence of the vanadium extraction with roasting was the conversion of cubic crystal systemic vanadium-bearing magnetite (FeO(Fe,V)2O3) to trigonal crystal systemic hematite (α-Fe2O3), and as most Fe(V)–O bonds were broken with the reconstructed conversion, the dissociation of V(III) occurred. Furthermore, the main decomposition products of K2SO4/KCl were K2O, SO2, and Cl2. X-ray diffraction (XRD) and related SEM-EDS analyses indicated that there were mainly three aspects in the mechanism of K2SO4/KCl for extracting vanadium. Firstly, activated K2O could combine with vanadium to generate soluble KVO3 rather insoluble Ca(VO3)2; secondly, SO2 could react with CaO to form CaSO4 to prevent the generation of acid-consuming Ca(VO3)2, which was beneficial to the dissolution of vanadium-bearing sphene (Ca(Ti,V)SiO4O); thirdly, Cl2 could destroy the structure of hematite (Fe2O3) to reduce its wrapping extent to KVO3.


Minerals ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 25 ◽  
Author(s):  
Renmin Li ◽  
Tao Liu ◽  
Yimin Zhang ◽  
Jing Huang ◽  
Chengbao Xu

Author(s):  
S. V. Kornilkov ◽  
A. N. Dmitriev ◽  
A. E. Pelevin

Despite the plants of the Ural region have significant mining capacities, they are buying raw materials from other regions, therefore the task of wastes minimization is a perspective of supporting their raw materials base. A technology was proposed to increase the quality of titanium-magnetite concentrate, comprising dividing of the ore into two technological grades – a rich and a poor ones following separate crushing and concentration of the grades at separate sections. Due to this technological scheme, the ore is divided into easy-concentrated and hard-concentrated grades at the concentration stage, but not at the stages of preparation to development, mining, transporting and crushing. The advantage of the new technology is the relative simplicity of equipment modernization, since the technological scheme of the ore processing is modified only at the concentration plant. Under laboratory conditions, an iron-vanadium concentrate with iron content of 67.1% and vanadium pentoxide of 0.6% was obtained.


Author(s):  
Navin Sheth ◽  
Sunny Shah ◽  
Arti Potdar ◽  
Anand Shah

The purpose of this research was to study the aqueous-based film coating of tablets utilizing a laboratory-scale side-vented perforated pan-coating apparatus. The process parameters of potential importance with respect to the final film quality were evaluated by using trial and error method. Tablets were evaluated for coating uniformity (mg), coating process efficiency (%), surface roughness, and %LOD (loss on drying). Spray rate and inlet air temperature both affect the all characteristic of coated tablets. Rotating speed of pan mainly affect the coating uniformity of tablets. % Solid content affects the surface of coated tablets and also creates a problem in spray flow. The process parameters relevant to a side-vented perforated pan coating process can be identified and, consequently, optimized.


2013 ◽  
Vol 690-693 ◽  
pp. 3175-3179
Author(s):  
Ji Gao ◽  
Di Wang ◽  
Yao Sun

The process parameters of electrical discharge grinding,such as workpiece polarity, pulse width, pulse interval, peak current, peak voltage, all have influence on GH3536’s surface roughness.General method is difficult to determine the relationship between the process parameters and the process indicators. This article established a artificial neural network model of EDG GH3536 surface roughness which can forecast. Neural network algorithm use BP algorithm, the network structure is the 2-4-1.


Sign in / Sign up

Export Citation Format

Share Document