scholarly journals Geochronological and Geochemical Study of Zircon from Tourmaline-Muscovite Granites of the Archaean Kolmozero–Voronya Greenstone Belt: Insights into Sources of the Rare-Metal Pegmatites

Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 760
Author(s):  
Nikolay M. Kudryashov ◽  
Oksana V. Udoratina ◽  
Matthew A. Coble ◽  
Ekaterina N. Steshenko

In order to determine the U-Pb crystallization age of zircon from the tourmaline-muscovite granites of the Kolmozero–Voronya greenstone belt located in the northeastern Fennoscandian Shield (Kola Peninsula), an isotope-geochronological study of the zircon grains was performed using a SHRIMP-RG microprobe. The belt is represented by the Archaean volcano-sedimentary rocks (2.9–2.8 Ga). Deposits of rare-metal pegmatites (Li and Cs with associated Nb, Ta, and Be) occur within the belt and on its margins. The age of the pegmatites within the belt was estimated at 2.7–2.6 Ga. Until now, there has been no generally accepted view on the genetic relation of the pegmatites with granite. Various authors have suggested that the pegmatites could potentially be associated with many type of granitoids within the region, i.e., plagiogranites, tonalites, amphibole-biotite granodiorites, microcline granites, alkaline granites, or muscovite-tourmaline granites. Zircon crystals from the muscovite-tourmaline granites are heterogeneous; they have less altered cores and strongly altered rims. The zircon cores are slightly enriched in U at a value of 173–1030 ppm, Th/U = 0.1–0.4. The zircons’ rims are heavily enriched in U at a value of 700–3300 ppm, Th/U = 0.03–0.08, indicating metasomatic processes. Zircon characteristics show that it crystallized from a melt enriched in a fluid phase. Fluid activity lasted after zircon crystallization as reflected in the irregular composition of the mineral and its rare earth element (REE) patterns that are typical of a metasomatic zircon. The computed zircon crystallization temperature in the tourmaline-muscovite granites is in the range of 650–850 °C. The discordant age calculated for five analyzed points of the zircon crystal cores is 2802 ± 13 Ma. The discordant age for four analyzed points of the zircon crystal rims is found to be 2728 ± 14 Ma. On the basis of the obtained isotope-geochronological data, we conclude that the tourmaline-muscovite granites located in the immediate vicinity of rare-metal pegmatite veins are the most probable source of matter for the pegmatites.

2021 ◽  
Vol 62 (10) ◽  
pp. 1175-1187
Author(s):  
A.D. Nozhkin ◽  
O.M. Turkina ◽  
K.A. Savko

Abstract —The paper presents results of a petrogeochemical and isotope–geochronological study of the granite–leucogranite association of the Pavlov massif and felsic volcanics from the Elash graben (Biryusa block, southwest of the Siberian craton). A characteristic feature of the granite–leucogranites is their spatial and temporal association with vein aplites and pegmatites of the East Sayan rare-metal province. The U–Pb age of zircon from granites of the Pavlov massif (1852 ± 5 Ma) is close to the age of the pegmatites of the Vishnyakovskoe rare-metal deposit (1838 ± 3 Ma). The predominant biotite porphyritic granites and leucogranites of the Pavlov massif show variable alkali ratios (K2O/Na2O = 1.1–2.3) and ferroan (Fe*) index and a peraluminous composition; they are comparable with S-granites. The studied rhyolites of the Tagul River (SiO2 = 71–76%) show a low ferroan index, a high K2O/Na2O ratio (1.6–4.0), low (La/Yb)n values (4.3–10.5), and a clear Eu minimum (Eu/Eu* = 0.3–0.5); they are similar to highly fractionated I-granites. All coeval late Paleoproterozoic (1.88–1.85 Ga) granites and felsic volcanics of the Elash graben have distinct differences in composition, especially in the ferroan index and HREE contents, owing to variations in the source composition and melting conditions during their formation at postcollisions extension. The wide range of the isotope parameters of granites and felsic volcanic rocks (εNd from +2.0 to –3.7) and zircons (εHf from +3.0 to +0.8, granites of the Toporok massif) indicates the heterogeneity of the crustal basement of the Elash graben, which formed both in the Archean and in the Paleoproterozoic.


Author(s):  
О. Dubyna ◽  
S. Kryvdik ◽  
V. Belskyy ◽  
О. Vyshnevskyi

The results of the ore and accessory minerals study in the syenite of the Perga beryllium deposit are discussed. Phenakite and genthelvite are found among Be-bearing minerals. Genthelvite of this syenite, being compared to early published data on genthelvite of the Perga deposit, is distinguished by the highest ZnO content which is close to the theoretical maximum) due to the alkaline nature of studied rock ((Na + K)/Al = 1.09). Genthelvite occurs as later mineral to phenakite or is formed by phenakite replacement at rising the alkalinity as a result of melt differentiation. Columbite with high-Mn content, Y-silicate (keiviite-(Y)?), rare-earth fluorocarbonate (bastnesite) are also found among other minerals of rare metals. The presence of fluorite and rare-earth fluorocarbonate in association with genthelvite or phenakite may indicate that Be and REE were transported in ore-bearing fluids as complex fluorine-carbonate compounds. Considering the geochemical characteristics of rocks (meta-aluminous, subalkaline and alkaline series, deep negative Euanomalies, low Sr, Ba, elevated – HFS elements) from the Sushcano-Perga region, enrichment of these rocks with rare metals and Be are related to intensive feldspar fractionation of the primary melts and due to alkaline oversaturation, volatile and rare metals (Be, Li, REE, Y, Nb, Ta) enrichment in the residual fractions of granitic or syenitic compositions. Postmagmatic alkaline solutions enriched in F and CO32- promote of Be concentration in fluid phase with its following migration and crystallization as genthelvite.


2006 ◽  
Vol 43 (11) ◽  
pp. 1621-1637 ◽  
Author(s):  
Melissa Bowerman ◽  
Amy Christianson ◽  
Robert A Creaser ◽  
Robert W Luth

Alkaline igneous rocks of the Crowsnest Formation in southwestern Alberta and in the Howell Creek area in southeastern British Columbia have been suggested previously to be cogenetic. To test this hypothesis, samples of both suites were characterized petrographically and their major and trace element geochemistry was determined. A subset of the samples was analyzed for whole-rock Sr and Nd isotope geochemistry. The samples of the two suites are latites, trachytes, and phonolites based on the International Union of Geological Sciences (IUGS) total alkalis versus silica (TAS) diagram. Samples from both suites show similar patterns on mantle-normalized trace element diagrams, being enriched relative to mantle values but depleted in the high field-strength elements Nb, Ta, and Ti relative to the large-ion lithophile elements. The chondrite-normalized rare-earth element (REE) patterns for both suites are light REE enriched, with no Eu anomaly and flat heavy REE. The isotope geochemistry of both suites is characterized by low initial 87Sr/86Sr (SrT = 0.704 to 0.706) and low εNdT (–7 to –16). The Howell Creek samples have lower εNdT and higher SrT than do the Crowsnest samples. Based on the intra- and intersuite differences in the isotope geochemistry, we conclude that these samples are not cogenetic, but rather represent samples that have experienced similar evolutionary histories from a heterogeneous source region in the subcontinental lithospheric mantle.


2021 ◽  
Vol 62 (9) ◽  
pp. 1021-1035
Author(s):  
M.V. Rampilova ◽  
G.S. Ripp ◽  
M.O. Rampilov ◽  
B.B. Damdinov ◽  
L.B. Damdinova ◽  
...  

Abstract —The paper is concerned with a geochemical study of apoultrabasic metasomatites of the Ospa–Kitoi, Parama, and Ust’-Kelyana ophiolite massifs located in the southern folded framing of the Siberian craton. The isotope (O, C, H, Sr, and Rb) systems of dunites, serpentinites, nephrites, listvenites, and talc–carbonate rocks are studied. The isotopic composition of oxygen in olivines from dunites is characterized by δ18O = 4.6–5.5‰. The δ18O values of serpentinites (4.67–7.35‰) point to the mantle genesis of fluids and might have been inherited from ultrabasic rocks. Nephrites are slightly enriched in heavy oxygen isotope (δ18O = 6.13–9.54‰). This indicates that their fluid phase was transported from serpentinites and captured a small portion of the crustal component. The widest variations in δ18O values, from 8.12 to 17.46‰, are observed in minerals from listvenites. Carbonates from these rocks show a highly heterogeneous isotopic composition of oxygen (δ18O = 12.9–18.8‰) and carbon δ13C = –2.8 to +2.8‰). These rocks formed with the contribution of metamorphogenic fluids. According to the isotopic composition of hydrogen, the examined serpentinites are divided into two groups: with δD values specific to “magmatic water” (δD = –73.50 to –85.00‰) and those typical of meteoric fluids (δD = –151.90 to –167.20‰). The listvenites are characterized by low Rb and high Sr contents. Their 87Sr/86Sr values (0.70702–0.70971) indicate the contribution of a crustal source. The study of fluid inclusions in minerals from listvenites has shown that the rocks formed under relatively low-temperature conditions. The homogenization temperatures of fluid inclusions in quartz and magnesite from listvenites of the Ospa–Kitoi massif are 184–290 ºC and 122–182 ºC, respectively. In the Parama massif, the homogenization temperature of fluid inclusions in quartz is 130–170 ºC. The solutions that formed listvenites of the Ospa–Kitoi massif were slightly saline (TDS = 2.9–8.4 wt.% NaCl eq.), with NaCl and Na2CO3 being the main salt components.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Charles W. Messo ◽  
Shukrani Manya ◽  
Makenya A. H. Maboko

The Neoarchaean volcanic rocks of the Kilimafedha greenstone belt consist of three petrological types that are closely associated in space and time: the predominant intermediate volcanic rocks with intermediate calc-alkaline to tholeiitic affinities, the volumetrically minor tholeiitic basalts, and rhyolites. The tholeiitic basalts are characterized by slightly depleted LREE to nearly flat REE patterns with no Eu anomalies but have negative anomalies of Nb. The intermediate volcanic rocks exhibit very coherent, fractionated REE patterns, slightly negative to absent Eu anomalies, depletion in Nb, Ta, and Ti in multielement spidergrams, and enrichment of HFSE relative to MORB. Compared to the other two suites, the rhyolites are characterized by low concentrations of TiO2 and overall low abundances of total REE, as well as large negative Ti, Sr, and Eu anomalies. The three suites have a εNd (2.7 Ga) values in the range of −0.51 to +5.17. The geochemical features of the tholeiitic basalts are interpreted in terms of derivation from higher degrees of partial melting of a peridotite mantle wedge that has been variably metasomatized by aqueous fluids derived from dehydration of the subducting slab. The rocks showing intermediate affinities are interpreted to have been formed as differentiates of a primary magma formed later by lower degrees of partial melting of a garnet free mantle wedge that was strongly metasomatized by both fluid and melt derived from the subducting oceanic slab. The rhyolites are best interpreted as having been formed by shallow level fractional crystallization of the intermediate volcanic rocks involving plagioclase and Ti-rich phases like ilmenite and magnetite as well as REE-rich phases like apatite, zircon, monazite, and allanite. The close spatial association of the three petrological types in the Kilimafedha greenstone belt is interpreted as reflecting their formation in an evolving late Archaean island arc.


2019 ◽  
Vol 30 (5) ◽  
pp. 2501-2516 ◽  
Author(s):  
Sajjad Haider ◽  
Nouman Ijaz ◽  
A. Zeeshan ◽  
Yun-Zhang Li

Purpose Numerous researchers have probed the peristaltic flows because of their immense usage in industrial engineering, biomedical engineering and biological sciences. However, the investigation of peristaltic flow in two-phase fluid of a rotating frame in the presence of a magnetic field has not been yet discussed. Therefore, to fulfill this gap in the existing literature, this paper will explicate the peristaltic flow of two-phase fluid across a rotating channel with the effect of wall properties in the presence of a magnetic field. The purpose of this study is to investigate the two-phase velocity distribution and rotation parameter when magneto-hydrodynamics is applied. Design/methodology/approach The constituent equations are solved under the condition of low Reynolds number and long wavelength. The exact method is used to attain the subsequent equations and a comprehensive graphical study for fluid phase, particulate phase velocity and flow rates are furnished. The impacts of pertinent parameters, magnetic field and rotation are discussed in detail. Findings It is witnessed that the velocity profile of particulate phase gets higher values for the same parameters as compared to the fluid phase velocity. Moreover, the axial velocity increases with different values of particle volume fraction, but in case of magnetic field and rotation parameter, it shows the opposite behavior. Practical implications The outcomes of study have viable industrial implementations in systems comprising solid-liquid based flows of fluids involving peristaltic movement. Originality/value The investigation of peristaltic flow in two-phase fluid of a rotating frame in the presence of a magnetic field has not been yet discussed. Therefore, to fulfill this gap, the present study will explicate the peristaltic flow of two-phase fluid across a rotating channel with the effect of wall properties in the presence of magnetic field.


1995 ◽  
Vol 108 (11) ◽  
pp. 3611-3621 ◽  
Author(s):  
M.J. Brickman ◽  
J.M. Cook ◽  
A.E. Balber

We have used electron microscopy and flow cytofluorimetry to study endocytosis and intracellular transport of fluid phase bovine serum albumen gold complexes and membrane bound concanavalin A through endosomal compartments of bloodstream forms of Trypanosoma brucei rhodesiense. Both markers were rapidly endocytosed from the flagellar pocket. Within 20 minutes at 37 degrees C the markers reached a large, vesicular, perinuclear compartment that stained heavily with the CB1 monoclonal antibody. Neither marker left the flagellar pocket and entered cells at 4 degrees C. When cells were incubated at 12 degrees C, both markers entered the cell and were transported to collecting tubules, a tubular endosomal compartment that receives endocytosed material from coated endocytic vesicles. However, no material was transported from collecting tubules to the late, perinuclear compartment at 12 degrees C. The morphology of collecting tubule membranes was specifically altered at 12 degrees C; tubules became shorter and were arrayed near the flagellar pocket. The morphological alteration and the block in transport of endocytic markers to the perinuclear compartment seen at 12 degrees C were reversed 10 minutes after cells were returned to 37 degrees C. We also used flow cytofluorimetric measurements of pH dependent fluorescence quenching to measure the pH of the terminal endocytic compartment. Fluoresceinated lectins accumulated in a terminal compartment with a pH of 6.0-6.1, a value considerably higher than that of mammalian lysosomes. Fluorescence from fluoresceinated lectins in this terminal endocytic compartment was dequenched when bloodstream forms were incubated in the presence of chloroquine.


Minerals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 85 ◽  
Author(s):  
Laura Whyatt ◽  
Stefan Peters ◽  
Andreas Pack ◽  
Christopher L. Kirkland ◽  
Tonci Balic-Zunic ◽  
...  

A metasomatic zone formed between the contact of a 2940 ± 5 Ma intrusive trondhjemite sheet in the Archean dunite of the Seqi Ultramafic Complex, SW Greenland, consists of three distinct mineral zones dominated by (1) talc, (2) anthophyllite, and (3) phlogopite. These zones supposedly resulted from a process of dissolution of olivine by silica rich fluid residual from the trondhjemite magma, with crystallization of secondary minerals along a compositional gradient in the fluid phase. A zircon crystal inclusion in a large (4 cm) olivine porphyroblast was dated in situ via LA-ICP-MS U–Pb isotope analysis, yielding a weighted mean 207Pb/206Pb age of 2963 ± 1 Ma, which coincides with granulite facies metamorphism and potential dehydration. Considering phase relations appropriate for the dunite composition, we deduced the talc forming conditions to be at temperatures of 600–650 °C and at a pressure below 1 GPa. This is supported by oxygen isotope data for talc, anthophyllite and phlogopite in the metasomatic zone, which suggests formation in the temperature range of 600–700 °C from fluids that had a δ18O of ~8‰ and a Δ’17O0.528 of about −40 ppm, i.e., from fluids that could have been derived from the late stage trondhjemite sheet.


Sign in / Sign up

Export Citation Format

Share Document