scholarly journals Bioleaching for the Removal of Arsenic from Mine Tailings by Psychrotolerant and Mesophilic Microbes at Markedly Continental Climate Temperatures

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 972
Author(s):  
Kuanysh N. Seitkamal ◽  
Nariman K. Zhappar ◽  
Valentin M. Shaikhutdinov ◽  
Aigerim K. Shibayeva ◽  
Sadia Ilyas ◽  
...  

This study investigated the biological removal of heavy metals from mine tailings in Kazakhstan using acidophilic microorganism strains Acidithiobacillus ferrivorans 535 and Acidithiobacillus ferrooxidans 377. The experiments were conducted in shake flasks at pH 1.6, various temperatures (28 °C, 18 °C, and 8 °C), and 10% solid concentration (w/v). The results of inductively coupled plasma optical emission spectroscopy and X-ray diffraction analyses showed that arsenic was particularly efficiently removed at 28 °C. At this temperature, A. ferrooxidans 377 was more efficient at removal than the other strain. Meanwhile, A. ferrivorans 535 was more efficient than A. ferrooxidans 377 at 8 °C. One of the more significant findings to emerge from this study is that arsenic can be removed at a low temperature and high solid concentration. The results of this study support the idea that microorganisms can be used for removing arsenic via a combination of biooxidation and chemical methods.

2020 ◽  
Vol 9 (1) ◽  
pp. 1586-1593
Author(s):  
Tingting Yan ◽  
Shengwen Zhong ◽  
Miaomiao Zhou ◽  
Xiaoming Guo ◽  
Jingwei Hu ◽  
...  

Abstract The extraction of Li from the spent LiFePO4 cathode is enhanced by the selective removal using interactions between HCl and NaClO to dissolve the Li+ ion while Fe and P are retained in the structure. Several parameters, including the effects of dosage and drop acceleration of HCl and NaClO, reaction time, reaction temperature, and solid–liquid ratio on lithium leaching, were tested. The Total yields of lithium can achieve 97% after extraction process that lithium is extracted from the precipitated mother liquor, using an appropriate extraction agent that is a mixture of P507 and TBP and NF. The method also significantly reduced the use of acid and alkali, and the economic benefit of recycling is improved. Changes in composition, morphology, and structure of the material in the dissolution process are characterized by inductively coupled plasma optical emission spectrometry, scanning electron microscope, X-ray diffraction, particle size distribution instrument, and moisture analysis.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3267
Author(s):  
Gigliola Lusvardi ◽  
Francesca Sgarbi Stabellini ◽  
Roberta Salvatori

(1) Background: valuation of the bioactivity and cytocompatibility of P2O5-free and CeO2 doped glasses. (2) Methods: all glasses are based on the Kokubo (K) composition and prepared by a melting method. Doped glassed, K1.2, K3.6 and K5.3 contain 1.2, 3.6, and 5.3 mol% of CeO2. Bioactivity and cytotoxicity tests were carried out in simulated body fluid (SBF) solution and murine osteocyte (MLO-Y4) cell lines, respectively. Leaching of ions concentration in SBF was determined by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES). The surface of the glasses were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. (3) Results: P2O5-free cerium doped glasses are proactive according to European directives. Cerium increases durability and retards, but does not inhibit, (Ca10(PO4)6(OH)2, HA) formation at higher cerium amounts (K3.6 and K5.3); however, cell proliferation increases with the amount of cerium especially evident for K5.3. (4) Conclusions: These results enforce the use of P2O5-free cerium doped bioactive glasses as a new class of biomaterials.


2007 ◽  
Vol 4 (2) ◽  
pp. 98 ◽  
Author(s):  
Elena Rodríguez ◽  
José R. Peralta-Videa ◽  
Blanca Sánchez-Salcido ◽  
Jason G. Parsons ◽  
Jaime Romero ◽  
...  

Environmental context. The conventional methods used for the extraction of gold from mine tailings and runoff are costly and often require harsh chemical treatment. Using plants to extract gold is more environmentally friendly and economically feasible. Plants are especially appealing because they can uptake low levels of gold and accumulate them in their tissues, whereas conventional methods are less effective at extracting gold at low levels. Thiourea has been proposed as an alternative gold chelator that could help in gold phytomining. It is less toxic than cyanide, which is the chemical commonly used to dissolve gold from mine ores. Abstract. Phytomining, the use of plants to recover noble metals, is developing as a feasible option to extract gold from mine tailings. In this study, thiourea (TU) was used to increase gold availability and to enhance gold accumulation by the desert plant Chilopsis linearis. Seedlings of C. linearis were grown in a hydroponic solution containing 25 μM Au and TU at 25, 50, 100, 200, and 400 μM. After two weeks of growth, the concentration of Au, micro- and macronutrients was determined using inductively coupled plasma–optical emission spectroscopy. In addition, X-ray absorption spectroscopy was used to determine the oxidation state and the coordination of the Au atom within the plant tissues. The effect of TU on plant growth was determined as well. The results of the present study demonstrated that TU at 25 μM was able to increase the Au uptake by C. linearis plants grown in hydroponics without any toxic effect. However, the translocation to stem and leaves was better at 100 and 200 μM of TU, respectively. The addition of TU to hydroponic solutions did not affect the uptake of Ca, Mg, P, and K. However, TU induced an increase in uptake of S, Fe, Cu, and Zn and a decrease in Mn uptake. When Au was chelated with TU, the plant transformed 64% of the Au–TU complex to Au(0) and the other 36% remained in the ionic form.


2020 ◽  
Author(s):  
Daniela Novembre ◽  
Domingo Gimeno ◽  
Alessandro Del Vecchio

Abstract This work focuses on the hydrothermal synthesis of Na-P1 zeolite by using a kaolinite rock coming from Romana (Sassari, Italy). The kaolin is calcined at a temperature of 650 °C and then mixed with calculated quantities of NaOH. The synthesis runs are carried out at ambient pressure and at variable temperatures of 65 ° and 100 °C. For the first time compared to the past, the Na-P1 zeolite is synthesized without the use of additives and through a protocol that reduces both temperatures and synthesis times. The synthesis products are analysed by X-ray diffraction, high temperature X-ray diffraction, infrared spectroscopy, scanning electron microscopy and inductively coupled plasma optical emission spectrometry. The cell parameters are calculated using the Rietveld method. Density and specific surface area are also calculated. The absence of amorphous phases and impurities in synthetic powders is verified through quantitative phase analysis using the combined Rietveld and reference intensity ratio methods.The results make the experimental protocol very promising for an industrial transfer.


2020 ◽  
Vol 10 (6) ◽  
pp. 6837-6845

β-tricalcium phosphate (β-TCP) is a bioceramic with unique osteoinductive and osteoconductive properties. It can be obtained by calcining calcium-deficient apatites (CDHA) at 750°C and above. The reduction of calcining temperature or the stabilization of the β phase, by doping, is therefore of particular interest. This paper investigates the preparation of CDHA with a theoretical 0.05 Mg/(Ca + Mg) ratio and (Ca+Mg)/P = 1.55 via precipitation method, and the resultant powder is calcined at a different temperature ranging from 80 to 715°C. The as-synthesized undoped powder was used as the reference in this study. The effect of calcination temperature and composition were investigated by the aid of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), inductively coupled plasma optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM). The study indicated that the powder was pure Mg-doped beta-tricalcium phosphate. The incorporation of Mg within the calcium phosphate lattice promoted the formation and stabilization of the β -TCP phase at a lower temperature.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 553
Author(s):  
Dominik Höhlich ◽  
Thomas Mehner ◽  
Ingolf Scharf ◽  
Thomas Lampke

Ag–W two-phase system was prepared by electrodeposition using anhydrous 1-ethyl-3-methylimidazolium chloride [EMIm]Cl ionic-liquid (IL) solution with AlCl3 in different ratios. The deposition took place outside the glove box with a continuous Ar stream over the electrolyte at 120 °C and a pulsed-like current regime. Resultant layers show areas of Ag and W with an overall W content with a mass fraction of w W   = 50% (mole fraction x W   = 36.9%). The phase composition of Ag–W layers was observed by X-ray diffraction, and the chemical composition was characterized by scanning electron microscopy and inductively coupled plasma optical emission spectroscopy.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
N. K. Lee ◽  
G. H. An ◽  
K. T. Koh ◽  
G. S. Ryu

This study investigates the improved reactivity of a geopolymer based on a combination of fly ash and blast furnace slag (BFS) by the addition of silica fume. The geopolymer was synthesized by activating a mixture of fly ash, BFS, and three different types of silica fume with alkali activator. X-ray diffraction (XRD) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) were utilized to characterize the reaction. The silicate structure was also analyzed by nuclear magnetic resonance (NMR) spectroscopy. From these results, it was found that the replacement of fly ash with the silica fume led to a significant decrease in theQ4(1Al) and an increase in theQ4(2Al),Q4(3Al), andQ4(4Al). The Si/Al ratio of the aluminosilicate gel was relatively constant, ranging from 2.0 to 2.6, while the Si/Al ratio of the C-S-H gel increased with the addition of silica fume. Therefore, some of the Al dissolved from the slag contributed to the formation of aluminosilicate gel, and the remnant slag particles mostly participated in the formation of the C-(A)-S-H gel with a decrease in theQ2(1Al). The increase in the reactivity of slag caused by the addition of silica fume was attributed to the reaction of the Al in the slag with the silica fume.


2021 ◽  
Vol 340 ◽  
pp. 01026
Author(s):  
Sapar Konuspayev ◽  
Minavar Shaimardan ◽  
Nurlan Annas ◽  
T.S. Abildin ◽  
Y.Y. Suleimenov

Rhodium and rhodium-gold catalysts supported on amorphous aluminosilicates (ASA), titanium dioxide (rutile, TiO2) was prepared in two different ways: absorption and colloidal method. The catalysts were characterized by an inductively coupled plasma optical emission spectrometer (ICP-OES), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The activity and selectivity of the prepared catalysts were tested by the hydrogenation of benzene and toluene. Hydrogenation was conducted at a pressure of 4 MPa and a temperature 80 °C. The bimetallic Rh-Au/ASA catalyst prepared by the absorption method showed higher activity and selectivity in benzene hydrogenation reaction, the same catalyst prepared by the colloidal method demonstrated lower selectivity.


Author(s):  
Ilhem Rekkab-Hammoumraoui ◽  
Abderrahim Choukchou-Braham

A series of metal-loaded (Ru, Pt, Co) alumina catalysts were evaluated for the catalytic oxidation of cyclohexane using tertbutylhydroperoxide (TBHP) as oxidant and acetonitrile or acetic acid as solvent. These materials were prepared by the impregnation method and then characterized by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), H2 chemisorption, Fourier Transformed Infrared Spectroscopy (FTIR), High-Resolution Transmission Electron Microscopy (HRTEM), and X-ray Diffraction (XRD). All the prepared materials acted as efficient catalysts. Among them, Ru/Al2O3 was found to have the best catalytic activity with enhanced cyclohexane conversion of 36 %, selectivity to cyclohexanol and cyclohexanone of 96 % (57.6 mmol), and cyclohexane turnover frequency (TOF) of 288 h-1. Copyright © 2018 BCREC Group. All rights reservedReceived: 26th May 2017; Revised: 17th July 2017; Accepted: 18th July 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018How to Cite: Rekkab-Hammoumraoui, I., Choukchou-Braham, A. (2018). Catalytic Properties of Alumina-Supported Ruthenium, Platinum, and Cobalt Nanoparticles towards the Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone. Bulletin of Chemical Reaction Engineering & Catalysis, 13(1): 24-36 (doi:10.9767/bcrec.13.1.1226.24-35) 


Sign in / Sign up

Export Citation Format

Share Document