scholarly journals Thermal Behavior of Mg-Doped Calcium-Deficient Apatite and Stabilization of β Tricalcium Phosphate

2020 ◽  
Vol 10 (6) ◽  
pp. 6837-6845

β-tricalcium phosphate (β-TCP) is a bioceramic with unique osteoinductive and osteoconductive properties. It can be obtained by calcining calcium-deficient apatites (CDHA) at 750°C and above. The reduction of calcining temperature or the stabilization of the β phase, by doping, is therefore of particular interest. This paper investigates the preparation of CDHA with a theoretical 0.05 Mg/(Ca + Mg) ratio and (Ca+Mg)/P = 1.55 via precipitation method, and the resultant powder is calcined at a different temperature ranging from 80 to 715°C. The as-synthesized undoped powder was used as the reference in this study. The effect of calcination temperature and composition were investigated by the aid of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), inductively coupled plasma optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM). The study indicated that the powder was pure Mg-doped beta-tricalcium phosphate. The incorporation of Mg within the calcium phosphate lattice promoted the formation and stabilization of the β -TCP phase at a lower temperature.

2020 ◽  
Vol 11 (1) ◽  
pp. 8034-8042

The incorporation of magnesium (Mg) in tricalcium phosphate (TCP) was prepared through a precipitation method followed by calcination at 850 °C in air. Calcium hydroxide, (Ca(OH)2), phosphoric acid, (H3PO4), and magnesium chloride (MgCl2.6H2O) with a Ca/P ratio of 1.5, were mixed as the precursor materials. The concentration of added Mg was varied with respect to calcium (Ca) precursor molarity as such Mg/(Ca +Mg) molar ratio was 0.05, 0.10, and 0.15, while the (Ca+Mg)/P ratio was maintained at 1.50 throughout the experiment. The influence of Mg-doped TCP on phase composition, chemical structure, and a functional group at different weight percentages were accomplished through X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy (ICP-OES) and Fourier Transform Infrared Spectroscopy (FTIR) analyses. Based in the results of this research, the presence of magnesium led to the formation of Mg-doped calcium-deficient apatite (MgCDA) at 80°C and Mg-doped β-TCP at 850°C; the incorporation of Mg into the TCP phase causing an expansion of the lattice and increase in the lattice parameter. This result could be considered rather unusual.


2020 ◽  
Vol 9 (1) ◽  
pp. 1586-1593
Author(s):  
Tingting Yan ◽  
Shengwen Zhong ◽  
Miaomiao Zhou ◽  
Xiaoming Guo ◽  
Jingwei Hu ◽  
...  

Abstract The extraction of Li from the spent LiFePO4 cathode is enhanced by the selective removal using interactions between HCl and NaClO to dissolve the Li+ ion while Fe and P are retained in the structure. Several parameters, including the effects of dosage and drop acceleration of HCl and NaClO, reaction time, reaction temperature, and solid–liquid ratio on lithium leaching, were tested. The Total yields of lithium can achieve 97% after extraction process that lithium is extracted from the precipitated mother liquor, using an appropriate extraction agent that is a mixture of P507 and TBP and NF. The method also significantly reduced the use of acid and alkali, and the economic benefit of recycling is improved. Changes in composition, morphology, and structure of the material in the dissolution process are characterized by inductively coupled plasma optical emission spectrometry, scanning electron microscope, X-ray diffraction, particle size distribution instrument, and moisture analysis.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 250 ◽  
Author(s):  
Francesco Baldassarre ◽  
Angela Altomare ◽  
Nicola Corriero ◽  
Ernesto Mesto ◽  
Maria Lacalamita ◽  
...  

Europium-doped hydroxyapatite Ca10(PO4)6(OH)2 (3% mol) powders were synthesized by an optimized chemical precipitation method at 25 °C, followed by drying at 120 °C and calcination at 450 °C and 900 °C. The obtained nanosized crystallite samples were investigated by means of a combination of inductively coupled plasma (ICP) spectroscopy, powder X-ray diffraction (PXRD), Fourier Transform Infrared (FTIR), Raman and photoluminescence (PL) spectroscopies. The Rietveld refinement in the hexagonal P63/m space group showed europium ordered at the Ca2 site at high temperature (900 °C), and at the Ca1 site for lower temperatures (120 °C and 450 °C). FTIR and Raman spectra showed slight band shifts and minor modifications of the (PO4) bands with increasing annealing temperature. PL spectra and decay curves revealed significant luminescence emission for the phase obtained at 900 °C and highlighted the migration of Eu from the Ca1 to Ca2 site as a result of increasing calcinating temperature.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3267
Author(s):  
Gigliola Lusvardi ◽  
Francesca Sgarbi Stabellini ◽  
Roberta Salvatori

(1) Background: valuation of the bioactivity and cytocompatibility of P2O5-free and CeO2 doped glasses. (2) Methods: all glasses are based on the Kokubo (K) composition and prepared by a melting method. Doped glassed, K1.2, K3.6 and K5.3 contain 1.2, 3.6, and 5.3 mol% of CeO2. Bioactivity and cytotoxicity tests were carried out in simulated body fluid (SBF) solution and murine osteocyte (MLO-Y4) cell lines, respectively. Leaching of ions concentration in SBF was determined by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES). The surface of the glasses were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. (3) Results: P2O5-free cerium doped glasses are proactive according to European directives. Cerium increases durability and retards, but does not inhibit, (Ca10(PO4)6(OH)2, HA) formation at higher cerium amounts (K3.6 and K5.3); however, cell proliferation increases with the amount of cerium especially evident for K5.3. (4) Conclusions: These results enforce the use of P2O5-free cerium doped bioactive glasses as a new class of biomaterials.


2013 ◽  
Vol 777 ◽  
pp. 15-18 ◽  
Author(s):  
Jiu Xu Liu ◽  
Feng Wang ◽  
Jian Xing Shen ◽  
Qi Hui Lai ◽  
Ying Gai

nanohydroxyapatite (nanoHA) powders were prepared by liquid phase precipitation method, using diammonium hydrogen phosphate and calcium nitrate tetrahydrate as raw materials. It was studied that the prepared nanoHA powders not sintered and sintered at 800°C to adsorption of Cu2+ and Pb2+ in aqueous solutions, respectively. The structure and size of nanoHA powders was investigated by X-ray diffraction (XRD) and the concentrations of Cu2+and Pb2+ in aqueous solutions were tested by inductively coupled plasma emission spectrometer. The results revealed that the nanoHA powders have obvious absorption function for Cu2+ and Pb2+ in aqueous solutions. In addition, the absorption ratio was affected by the size of nanoHA.


2020 ◽  
Author(s):  
Daniela Novembre ◽  
Domingo Gimeno ◽  
Alessandro Del Vecchio

Abstract This work focuses on the hydrothermal synthesis of Na-P1 zeolite by using a kaolinite rock coming from Romana (Sassari, Italy). The kaolin is calcined at a temperature of 650 °C and then mixed with calculated quantities of NaOH. The synthesis runs are carried out at ambient pressure and at variable temperatures of 65 ° and 100 °C. For the first time compared to the past, the Na-P1 zeolite is synthesized without the use of additives and through a protocol that reduces both temperatures and synthesis times. The synthesis products are analysed by X-ray diffraction, high temperature X-ray diffraction, infrared spectroscopy, scanning electron microscopy and inductively coupled plasma optical emission spectrometry. The cell parameters are calculated using the Rietveld method. Density and specific surface area are also calculated. The absence of amorphous phases and impurities in synthetic powders is verified through quantitative phase analysis using the combined Rietveld and reference intensity ratio methods.The results make the experimental protocol very promising for an industrial transfer.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 553
Author(s):  
Dominik Höhlich ◽  
Thomas Mehner ◽  
Ingolf Scharf ◽  
Thomas Lampke

Ag–W two-phase system was prepared by electrodeposition using anhydrous 1-ethyl-3-methylimidazolium chloride [EMIm]Cl ionic-liquid (IL) solution with AlCl3 in different ratios. The deposition took place outside the glove box with a continuous Ar stream over the electrolyte at 120 °C and a pulsed-like current regime. Resultant layers show areas of Ag and W with an overall W content with a mass fraction of w W   = 50% (mole fraction x W   = 36.9%). The phase composition of Ag–W layers was observed by X-ray diffraction, and the chemical composition was characterized by scanning electron microscopy and inductively coupled plasma optical emission spectroscopy.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 972
Author(s):  
Kuanysh N. Seitkamal ◽  
Nariman K. Zhappar ◽  
Valentin M. Shaikhutdinov ◽  
Aigerim K. Shibayeva ◽  
Sadia Ilyas ◽  
...  

This study investigated the biological removal of heavy metals from mine tailings in Kazakhstan using acidophilic microorganism strains Acidithiobacillus ferrivorans 535 and Acidithiobacillus ferrooxidans 377. The experiments were conducted in shake flasks at pH 1.6, various temperatures (28 °C, 18 °C, and 8 °C), and 10% solid concentration (w/v). The results of inductively coupled plasma optical emission spectroscopy and X-ray diffraction analyses showed that arsenic was particularly efficiently removed at 28 °C. At this temperature, A. ferrooxidans 377 was more efficient at removal than the other strain. Meanwhile, A. ferrivorans 535 was more efficient than A. ferrooxidans 377 at 8 °C. One of the more significant findings to emerge from this study is that arsenic can be removed at a low temperature and high solid concentration. The results of this study support the idea that microorganisms can be used for removing arsenic via a combination of biooxidation and chemical methods.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
N. K. Lee ◽  
G. H. An ◽  
K. T. Koh ◽  
G. S. Ryu

This study investigates the improved reactivity of a geopolymer based on a combination of fly ash and blast furnace slag (BFS) by the addition of silica fume. The geopolymer was synthesized by activating a mixture of fly ash, BFS, and three different types of silica fume with alkali activator. X-ray diffraction (XRD) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) were utilized to characterize the reaction. The silicate structure was also analyzed by nuclear magnetic resonance (NMR) spectroscopy. From these results, it was found that the replacement of fly ash with the silica fume led to a significant decrease in theQ4(1Al) and an increase in theQ4(2Al),Q4(3Al), andQ4(4Al). The Si/Al ratio of the aluminosilicate gel was relatively constant, ranging from 2.0 to 2.6, while the Si/Al ratio of the C-S-H gel increased with the addition of silica fume. Therefore, some of the Al dissolved from the slag contributed to the formation of aluminosilicate gel, and the remnant slag particles mostly participated in the formation of the C-(A)-S-H gel with a decrease in theQ2(1Al). The increase in the reactivity of slag caused by the addition of silica fume was attributed to the reaction of the Al in the slag with the silica fume.


2019 ◽  
Vol 72 (9) ◽  
pp. 693
Author(s):  
Maryam Mohammadikish ◽  
Zohreh Zafari ◽  
Susan Torabi

Uniform zinc-containing infinite coordination polymer (ICP) nanoparticles were achieved via a straightforward and rapid precipitation method in 5min, from a bi-thioglycolate functionalized salpn ligand (salpn=N,N′-bis(salicylidene)-1,3-propanediamine) as linker and zinc acetate. Characterization of the resulting product was performed by CHN elemental analysis, inductively coupled plasma–optical emission spectroscopy, FT-IR spectroscopy, thermogravimetric analysis, electron microscopies (FE-SEM and HR-TEM), and photoluminescence spectroscopy. Elemental analyses verified the proposed structure for the ICP with a 1:2 ratio of the salpn type ligand and Zn2+ ion. FE-SEM, TEM, and AFM analyses unveiled the existence of nanoparticles with diameters of ~30nm. PL spectroscopy showed a blue shift in emission peak of the ICP with regards to the organic ligand. The obtained ICP was utilized as a precursor to synthesize ZnO nanoparticles with wurtzite structure. An increase in bandgap of the prepared ZnO nanoparticles was observed in comparison with bulk ZnO as a result of quantum confinement of photogenerated electron–hole pairs. This method can be exploited for the synthesis of other coordination polymer micro/nanostructures.


Sign in / Sign up

Export Citation Format

Share Document