scholarly journals Phase Relations in the FeO-Fe3C-Fe3N System at 7.8 GPa and 1350 °C: Implications for Oxidation of Native Iron at 250 km

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 984
Author(s):  
Aleksei N. Kruk ◽  
Alexander G. Sokol ◽  
Yurii V. Seryotkin ◽  
Yuri N. Palyanov

Oxidation of native iron in the mantle at a depth about 250 km and its influence on the stability of main carbon and nitrogen hosts have been reconstructed from the isothermal section of the ternary phase diagram for the FeO-Fe3C-Fe3N system. The results of experiments at 7.8 GPa and 1350 °C show that oxygen increase in the system to > 0.5 wt % provides the stability of FeO and leads to changes in the phase diagram: the Fe3C, L, and Fe3N single-phase fields change to two-phase ones, while the Fe3C + L and Fe3N + L two-phase fields become three-phase. Сarbon in iron carbide (Fe3C, space group Pnma) is slightly below the ideal value and nitrogen is below the EMPA (Electron microprobe analysis) detection limit. Iron nitride (ε-Fe3N, space group P63/mmc) contains up to 2.7 wt % С and 4.4 wt % N in equilibrium with both melt and wüstite but 2.1 wt % С and 5.4 wt % N when equilibrated with wüstite alone. Impurities in wüstite (space group Fmm) are within the EMPA detection limit. The contents of oxygen, carbon, and nitrogen in the metal melt equilibrated with different iron compounds are within 0.5–0.8 wt % O even in FeO-rich samples; 3.8 wt % C and 1.2 wt % N for Fe3C + FeO; and 2.9 wt % C and 3.5 wt % N for Fe3N + FeO. Co-crystallization of Fe3C and Fe3N from the O-bearing metal melt is impossible because the fields of associated C- and N-rich compounds are separated by that of FeO + L. Additional experiments with excess oxygen added to the system show that metal melt, which is the main host of carbon and nitrogen in the metal-saturated (~0.1 wt %) mantle at a depth of ~250 km and a normal heat flux of 40 mW/m2, has the greatest oxygen affinity. Its partial oxidation produces FeO and causes crystallization of iron carbides (Fe3C and Fe7C3) and increases the nitrogen enrichment of the residual melt. Thus, the oxidation of metal melt in the mantle enriched in volatiles may lead to successive crystallization of iron carbides and nitrides. In these conditions, magnetite remains unstable till complete oxidation of iron carbide, iron nitride, and the melt. Iron carbides and nitrides discovered as inclusions in mantle diamonds may result from partial oxidation of metal melt which originally contained relatively low concentrations of carbon and nitrogen.

Chemical and X-ray investigation of the reaction of carbon monoxide with iron nitrides and of the reaction of ammonia with iron carbides discloses the existence of iron carbonitrides— a series of new ternary interstitial alloys containing iron, carbon and nitrogen. ζ-phase carbonitrides, with structures similar to those of ζ-iron nitrides, have a range of homogeneity extending approximately from Fe 8 N 4 to Fe 8 C 3 N. The latter is isomorphous with Fe 2 N. Є-phase carbonitrides, which are isomorphous with Є-iron nitrides, have a composition range of approximately 25 to 33 atomic % nitrogen plus carbon, i.e. from Fe 3 X to Fe 2 X , in which the higher carbon concentration limit is not less than 16 atomic %. Probable phase fields for part of the iron-carbon-nitrogen system are given on a ternary diagram. Prolonged reaction of carbon monoxide with iron nitrides results in complete elimination of nitrogen. Below 500° C the product is a carbide of iron, now called iron percarbide, the narrow composition range of which includes Fe 20 C 9 . Above 500° C the product of the same reaction is cementite.


1998 ◽  
Vol 13 (7) ◽  
pp. 1905-1918 ◽  
Author(s):  
K. T. Jacob ◽  
K. P. Jayadevan

Phase equilibrium and electrochemical studies of the ternary system Bi–Sr–O indicate the presence of six ternary oxides (Bi2SrO4, Bi2Sr2O5, Bi2Sr3O6, Bi4Sr6O15, Bi14Sr24O52, and Bi2Sr6O11) and three solid solutions (δ, β, and γ). An isothermal section of the phase diagram is established at 1050 K by phase analysis of quenched samples. Three compounds, Bi4Sr6O15, Bi14Sr24O52, and Bi2Sr6O11, contain Bi5+ ions. The stability of these phases is a function of oxygen partial pressure. The chemical potentials of SrO in two-phase fields are determined as a function of temperature using solid-state cells based on single crystal SrF2 as the electrolyte. Measurement of the emf of cells based on SrF2 as a function of oxygen partial pressure in the gas at constant temperature gives information on oxygen content of the compounds present at the electrodes. The chemical potentials of Bi2O3 in two-phase fields of the pseudobinary Bi2O3–SrO are measured using cells incorporating (Y2O3)ZrO2 as the solid electrolyte. The standard free energies of formation of the ternary oxides are calculated independently using emfs of different cells. The independent assessments agree closely; the maximum difference in the value of of component binary oxides. The results are discussed in the light of the phase diagram and compared with calorimetric and chemical potential measurements reported in the literature. The combined use of emf data from cells incorporating fluoride and oxide electrolytes enhances the reliability of derived data.


2003 ◽  
Vol 3 ◽  
pp. 266-270
Author(s):  
B.H. Khudjuyerov ◽  
I.A. Chuliev

The problem of the stability of a two-phase flow is considered. The solution of the stability equations is performed by the spectral method using polynomials of Chebyshev. A decrease in the stability region gas flow with the addition of particles of the solid phase. The analysis influence on the stability characteristic of Stokes and Archimedes forces.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 773
Author(s):  
Aleks Arinchtein ◽  
Meng-Yang Ye ◽  
Michael Geske ◽  
Marvin Frisch ◽  
Ralph Kraehnert

CO2 Fischer–Tropsch synthesis (CO2–FTS) is a promising technology enabling conversion of CO2 into valuable chemical feedstocks via hydrogenation. Iron–based CO2–FTS catalysts are known for their high activities and selectivities towards the formation of higher hydrocarbons. Importantly, iron carbides are the presumed active phase strongly associated with the formation of higher hydrocarbons. Yet, many factors such as reaction temperature, atmosphere, and pressure can lead to complex transformations between different oxide and/or carbide phases, which, in turn, alter selectivity. Thus, understanding the mechanism and kinetics of carbide formation remains challenging. We propose model–type iron oxide films of controlled nanostructure and phase composition as model materials to study carbide formation in syngas atmospheres. In the present work, different iron oxide precursor films with controlled phase composition (hematite, ferrihydrite, maghemite, maghemite/magnetite) and ordered mesoporosity are synthesized using the evaporation–induced self–assembly (EISA) approach. The model materials are then exposed to a controlled atmosphere of CO/H2 at 300 °C. Physicochemical analysis of the treated materials indicates that all oxides convert into carbides with a core–shell structure. The structure appears to consist of crystalline carbide cores surrounded by a partially oxidized carbide shell of low crystallinity. Larger crystallites in the original iron oxide result in larger carbide cores. The presented simple route for the synthesis and analysis of soft–templated iron carbide films will enable the elucidation of the dynamics of the oxide to carbide transformation in future work.


2018 ◽  
Vol 33 ◽  
pp. 02063 ◽  
Author(s):  
Andrey Aksenov ◽  
Anna Malysheva

The analytical solution of one of the urgent problems of modern hydromechanics and heat engineering about the distribution of gas and liquid phases along the channel cross-section, the thickness of the annular layer and their connection with the mass content of the gas phase in the gas-liquid flow is given in the paper.The analytical method is based on the fundamental laws of theoretical mechanics and thermophysics on the minimum of energy dissipation and the minimum rate of increase in the system entropy, which determine the stability of stationary states and processes. Obtained dependencies disclose the physical laws of the motion of two-phase media and can be used in hydraulic calculations during the design and operation of refrigeration and air conditioning systems.


2006 ◽  
Vol Volume 5, Special Issue TAM... ◽  
Author(s):  
Slah SAHMIM ◽  
Fayssal Benkhaldoun

International audience This article is devoted to the analysis, and improvement of a finite volume scheme proposed recently for a class of non homogeneous systems. We consider those for which the corressponding Riemann problem admits a selfsimilar solution. Some important examples of such problems are Shallow Water problems with irregular topography and two phase flows. The stability analysis of the considered scheme, in the homogeneous scalar case, leads to a new formulation which has a naturel extension to non homogeneous systems. Comparative numerical experiments for Shallow Water equations with sourec term, and a two phase problem (Ransom faucet) are presented to validate the scheme. Cet article concerne l'analyse et l'application, d'un schéma proposé récemment por une classe de systèmes non homogènes. Nous considérons ceux pour lesquels le problème de Riemann correpondant admet une solution autosimilaire. Deux exemples importants de tels problèmes sont l'écoulement d'eau peu profonde au-dessus d'un fond non plat et les problèmes diphasiques. l'analyse de stabilité du schéma, dans le cas scalaire homogène, amène à une nouvelle écriture qui a une extension naturelle pour le cas non homogène. Des expériences numériques comparatives pour des équations de saint-Venant avec topographie variable, et un problème diphasique (Robinet de Ransom) sont présentés pour évaluer l'efficacité du schéma.


2006 ◽  
Vol 71 (11) ◽  
pp. 1147-1151 ◽  
Author(s):  
E. Makrlík ◽  
P. Vaňura

From extraction experiments and ?-activity measurements, the exchange extraction constant corresponding to the equilibrium Ba2+(aq) + SrL2 2+(nb) _ BaL 2 2+(nb) + Sr2+(aq) occurring in the two-phase water-nitrobenzene system (L = benzo-15-crown-5; aq = aqueous phase, nb = nitrobenzene phase) was evaluated as log K ex (Ba2+, SrL22+) = 0.3 ? 0.1. Furthermore, the stability constant of the benzo-15-crown-5-barium complex in nitrobenzene saturated with water was calculated for the temperature of 25 ?C: log ?nb (BaL2 2+) = 13.3?0.1.


2022 ◽  
Vol 92 (2) ◽  
pp. 187
Author(s):  
В.Г. Лебедев

The problems of constructing a multiphase model of the phase field for the processes of phase transitions of the first kind are considered. Based on the Gibbs energy of the complete system expressed in terms of antisymmetrized combinations of phase fields, it is shown that the equations of dissipative dynamics of a locally nonequilibrium system follow from the condition of its monotonic decrease, preserving the normalization of the sum of variables by one and the following properties of the previously known two-phase model.


Sign in / Sign up

Export Citation Format

Share Document