scholarly journals Optimization Studies on Biological Desulfurization of Sulfide Ore Using Response Surface Methodology

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 583
Author(s):  
Jiahui Tang ◽  
Yanxi Feng ◽  
Zengling Wu ◽  
Siyuan Zhang ◽  
Emmanuel Konadu Sarkodie ◽  
...  

This research aimed to optimize the experimental conditions of biodesulfurization of sulfide ore and to evaluate the flame-retardant effect after desulfurization under optimal conditions. Six experimental factors were determined: particle size of ore sample, ambient temperature, rotary speed of the shaking table, volume of bacteria liquid, concentration of leaching aid (Tween80), and pH value of acidizing ore sample. Desulfurization efficiency was used as the main characterization index of the desulfurization effect in optimization studies. Particle size of ore sample, rotary speed of the shaking table, and volume of bacteria liquid inoculated were selected as significant factors by a Plackett–Burman experiment. Modeling, optimization, and analysis of the interactive effects of these factors, notably between particle size and bacteria liquid, were performed using a Box–Behnken design with response surface methodology. The optimum operating conditions were found to be: particle size of 120 to 140 mesh, rotary speed of 175 rpm, and bacteria liquid of 111 mL. Under these conditions, a significant rise of 8.1% was seen in 5-day average desulfurization efficiency. The 5-day oxidation weight gain rate of desulfurized ore was 2.73%, while that of the control group was 4.78%. The results show that, after optimized desulfurization, the surface oxidizability and spontaneous combustion tendency of the ore are reduced.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Nour Sh. El-Gendy ◽  
Hekmat R. Madian ◽  
Salem S. Abu Amr

A statistical model was developed in this study to describe bioethanol production through a batch fermentation process of sugarcane molasses by locally isolatedSaccharomyces cerevisiaeY-39. Response surface methodology RSM based on central composite face centered design CCFD was employed to statistically evaluate and optimize the conditions for maximum bioethanol production and study the significance and interaction of incubation period, initial pH, incubation temperature, and molasses concentration on bioethanol yield. With the use of the developed quadratic model equation, a maximum ethanol production of 255 g/L was obtained in a batch fermentation process at optimum operating conditions of approximately 71 h, pH 5.6, 38°C, molasses concentration 18% wt.%, and 100 rpm.


2020 ◽  
Vol 26 (2) ◽  
pp. 200105-0
Author(s):  
Kaushal Naresh Gupta ◽  
Rahul Kumar

This paper discusses the isolation of xylene vapor through adsorption using granular activated carbon as an adsorbent. The operating parameters investigated were bed height, inlet xylene concentration and flow rate, their influence on the percentage utilization of the adsorbent bed up to the breakthrough was found out. Mathematical modeling of experimental data was then performed by employing a response surface methodology (RSM) technique to obtain a set of optimum operating conditions to achieve maximum percentage utilization of bed till breakthrough. A fairly high value of R2 (0.993) asserted the proposed polynomial equation’s validity. ANOVA results indicated the model to be highly significant with respect to operating parameters studied. A maximum of 76.1% utilization of adsorbent bed was found out at a bed height of 0.025 m, inlet xylene concentration of 6,200 ppm and a gas flow rate of 25 mL.min-1. Furthermore, the artificial neural network (ANN) was also employed to compute the percentage utilization of the adsorbent bed. A comparison between RSM and ANN divulged the performance of the latter (R2 = 0.99907) to be slightly better. Out of various kinetic models studied, the Yoon-Nelson model established its appropriateness in anticipating the breakthrough curves.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2327 ◽  
Author(s):  
Ruth Anyanwu ◽  
Cristina Rodriguez ◽  
Andy Durrant ◽  
Abdul Olabi

The feasibility of the application of a tray drier in dewatering microalgae was investigated. Response surface methodology (RSM) based on Central Composite Design (CCD) was used to evaluate and optimise the effect of air temperature and air velocity as independent variables on the dewatering efficiency as a response function. The significance of independent variables and their interactions was tested by means of analysis of variance (ANOVA) with a 95% confidence level. Results indicate that the air supply temperature was the main parameter affecting dewatering efficiency, while air velocity had a slight effect on the process. The optimum operating conditions to achieve maximum dewatering were determined: air velocities and temperatures ranged between 4 to 10 m/s and 40 to 56 °C respectively. An optimised dewatering efficiency of 92.83% was achieved at air an velocity of 4 m/s and air temperature of 48 °C. Energy used per 1 kg of dry algae was 0.34 kWh.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 66
Author(s):  
Ziba Barati ◽  
Sajid Latif ◽  
Sebastian Romuli ◽  
Joachim Müller

In this study, the effect of enzymatic pre-treatment and the size of cassava tubers on mechanical peeling was examined. Cassava tubers were sorted based on their mass as small, medium and large. Viscozyme® L and an abrasive cassava peeling machine was used for the enzymatic pre-treatment and the mechanical peeling, respectively. Response surface methodology (RSM) was used to investigate the effect of the enzyme dose (0.5–1.9 mL g−1), incubation time (1.5–6 h), peeling time (1.5–4.5 min) and size of the tubers (small, medium and large) on the peeling process. Peeled surface area (PSA) and peel loss (PL) were measured as main responses in RSM. Results showed that the PSA and PL were significantly (p < 0.05) influenced by the enzyme dose, incubation time and peeling time. The size of tubers only had a significant impact on the PSA. The optimum operating conditions for different sizes of tubers were found and validated. Under optimum conditions, the PSA of the large tubers (89.52%) was significantly higher than the PSA of the medium and small tubers (p < 0.05). Application of enzymatic pre-treatment can improve the mechanical peeling process especially for larger cassava tubers.


2014 ◽  
Vol 16 (2) ◽  
pp. 31-35 ◽  
Author(s):  
Ilona Trawczyńska ◽  
Marek Wójcik

Abstract Permeabilization was used for the purpose of transforming the cells of microorganisms into biocatalysts with an enhanced enzyme activity. Baker’s yeast cells were permeabilized with various organic solvents. A high degree of catalase activity was observed upon permeabilization with acetone, chloroform, isopropyl alcohol and ethyl acetate. Response surface methodology was used to model the effect of concentration of isopropyl alcohol, temperature and treatment time on the permeabilization of baker’s yeast cells to maximize the decomposition of H2O2. The optimum operating conditions for permeabilization were observed at 53.7% concentration of isopropyl alcohol, treatment time of 40 min and temperature of 15.6oC. A maximum value of catalase activity was found to be 6.188 U/g wet wt. and was ca. 60 times higher than the catalytic activity of yeast not treated by the permeabilization process.


2019 ◽  
Vol 20 (2) ◽  
pp. 574-585 ◽  
Author(s):  
Oznur Begum Gokcek ◽  
Nigmet Uzal

Abstract The present research investigates the removal of arsenic (As) from aqueous solutions using micellar-enhanced ultrafiltration (MEUF) by utilizing two different surfactants: benzethonium chloride and dodecyl pyridinium chloride (BCl and DPCl). The impact of the operating variables and maximum removal efficiency were found under different conditions for BCl and DPCl surfactants. The maximum As rejection efficiency for MEUF with BCl and DPCl surfactants is 92.8% and 84.1%, respectively. In addition to this, a statistics-based experimental design with response surface methodology was used for the purpose of examining the impact of operating conditions, including initial pH, initial As concentration (ppb), and surfactant concentration (BCl, mM) in As-removal from aqueous solutions. In the analysis of the experimental data, a second-order polynomial model that was validated by statistical analysis for the BCl surfactant was used. On the basis of the response model created, the removal of As ions was acquired at optimum operating parameters, including the initial As concentration of 150 ppb, surfactant concentration of 5 mM and pH 10 for the BCl surfactant with 92.8% As-removal efficiency.


2013 ◽  
Vol 333-335 ◽  
pp. 1959-1966
Author(s):  
Jue Wang ◽  
Xi Chang Wang ◽  
Yuan Liu

In order establish an efficient and environment-friendly process, crab flavoring were extracted from Chinese mitten crab(Eriocheir Sinensis)by-products using a selected enzyme formulation (including ratio of enzyme to material, pH and temperature). To the purpose, the extraction yield (Y) of amino acids was selected as the response variables. The model given through response surface methodology enables us to identify the optimum operating conditions (ratio of enzyme to material 1.7g/100g, pH 6.5 and temperature 65.3°C, respectively), under which it predicts a maximum response of extraction yield of amino acids 34.27μg/mg. Crab flavoring extraction is rich in sweet taste free amino acids by automatic amino acids analyzer. These results, suggests that the use of the flavourzyme treatment could extract crab flavorings out of crab by-products.


2014 ◽  
Vol 86 (2) ◽  
pp. 923-934 ◽  
Author(s):  
DÉBORA C. BASSANI ◽  
DOMINGOS S. NUNES ◽  
DANIEL GRANATO

This study focused on maximizing the extraction of total phenolics and flavonoids as well as the antioxidant activity measured by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay from roasted yerba mate (Ilex paraguariensis) as a function of time (5, 7.5 and 10 min) and temperature of extraction (60, 75 and 90°C). The data were subjected to Response Surface Methodology and the results showed that polynomial equations were significant, did not present lack of fit, and presented adjusted determination coefficients above 98%, proving their suitability for prediction purposes. Using the desirability function, the optimum operating conditions to obtain a higher extraction of antioxidants was found to be 10 min of extraction at 90°C, and the tea prepared under these experimental conditions presented 427.74 mg of gallic acid equivalents per liter and 80.02% of inhibition of the DPPH radical. The flavonoid content was highly correlated (r = 0.9046, p < 0.001) to the antioxidant capacity.


2019 ◽  
Vol 46 (4) ◽  
pp. 299-307 ◽  
Author(s):  
Anirban Banik ◽  
Suman Dutta ◽  
Tarun Kanti Bandyopadhyay ◽  
Sushant Kumar Biswal

The paper investigates increasing permeate flux (%) of the disc membrane which can improve the quality of rubber industrial effluent of Tripura. Response surface methodology was used to optimize the independent influencing parameters to improve the permeate flux. The effect of different influencing parameters like operating pressure, membrane pore size, and inlet feed velocity on membrane permeate flux were studied to determine the optimum operating conditions within the predefined boundary. The experiments were pre-planned and designed according to central composite rotatable design, and second-order polynomial regression model was developed for regression and analysis of variance study. Results show the membrane has maximum permeate flux (%) when the operating pressure is 14.50 Pa, pore size is 0.20 μm, and inlet feed velocity is 2.10 m/s. The Pareto analysis in the study established that the inlet velocity was the most influential parameter in the model equation.


Sign in / Sign up

Export Citation Format

Share Document