scholarly journals Unique Association of Sulphosalts from the Kľačianka Occurrence, Nízke Tatry Mts., Slovak Republic

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1002
Author(s):  
Jiří Sejkora ◽  
Martin Števko ◽  
Jaroslav Pršek ◽  
Róbert Hovorič ◽  
Emil Makovicky ◽  
...  

Unique association of sulphosalts was discovered at the Kľačianka occurrence, Nízke Tatry Mts., Slovak Republic. It is bound to thin hydrothermal veins with Sb mineralization hosted by the Variscan muscovite-biotite granodiorite and granite of Prašivá type. Ore mineralogy and crystal chemistry of ore minerals are studied here by ore microscopy, X-ray powder diffraction, electron microprobe analyses, and Raman spectroscopy. The early ore mineralization composed of pyrite and arsenopyrite is hosted in quartz gangue and is followed by abundant association of sulfosalts. Stibnite, zinkenite, robinsonite (including Cu-bearing variety), jamesonite, scainiite, dadsonite, disulfodadsonite, rouxelite, chovanite, semseyite, boulangerite, geocronite, tintinaite (with low Bi contents), tetrahedrite-(Fe), tetrahedrite-(Zn), bournonite, chalcostibite, bismuthinite, and gladite in association with sphalerite and rare galena and gold are identified here. The chlorine-rich character of the described sulphosalt association is its characteristic phenomenon. It is represented not only by the occurrence of Cl-sulphosalt and dadsonite, but increased Cl contents were detected in boulangerite, chovanite, disulfodadsonite, robinsonite, rouxelite, scainiite, or tintinaite. The presence of oxygen-containing sulphosalts, such as rouxelite, scainiite and chovanite, is also interesting. The crystallization of these rare chloro-, oxy- and oxy-chloro-sulphosalts at the Kľačianka occurrence required very specific conditions (elevated O2/S2 fugacity) and high chlorine activity in ore-forming fluids.

Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 572 ◽  
Author(s):  
Martin Števko ◽  
Jiří Sejkora ◽  
Zdeněk Dolníček ◽  
Pavel Škácha

Selenium-rich Au–Ag mineralization has been discovered in the Kremnica ore district, central Slovakia. The mineralization is hosted by a single quartz–dolomite vein hosted by Neogene propyllitized andesites of the Kremnica stratovolcano. Ore mineralogy and crystal chemistry of individual ore minerals have been studied here. The early base-metal ore mineralization composed of pyrite, sphalerite, and chalcopyrite lacks selenium, whereas the superimposed Au–Ag paragenesis is Se-enriched. The Au–Ag alloys, uytenbogaardtite, minerals of the galena–clausthalite series, acanthite–naumannite series, diaphorite, miargyrite, pyrargyrite–proustite, polybasite group, minerals of the tetrahedrite group and andorite branch (andorite IV, andorite VI, Ag-excess fizélyite), freieslebenite, and rare Pb–Sb sulphosalts (scaiinite, robinsonite, plagionite) have been identified here. Besides selenides, the most Se-enriched phases are miargyrite, proustite–pyrargyrite, and polybasite–pearceite, whose Se contents are among the highest reported worldwide. In addition, one new phase has been found, corresponding to a Se-analogue of pearceite containing 2.08–3.54 apfu Se. The style of mineralization, paragenetic situation, and chemical trends observed in individual minerals are comparable to those of Au–Ag low-sulphidation epithermal Au–Ag mineralizations of the Kremnica and neighboring Štiavnica and Hodruša-Hámre ore districts. However, the pronounced enrichment in selenium is a specific feature of the studied vein only.


Author(s):  
Martin Števko ◽  
Jiří Sejkora ◽  
Zdeněk Dolníček ◽  
Pavel Škácha

Selenium-rich Au-Ag mineralization has been discovered in the Kremnica ore district, central Slovakia. The mineralization is hosted by a single quartz-dolomite vein hosted by Neogene propyllitized andesites of the Kremnica stratovolcano. Ore mineralogy and crystal chemistry of individual ore minerals have been studied here. The early base-metal ore mineralization composed of pyrite, sphalerite and chalcopyrite lacks selenium, whereas the superimposed Au-Ag paragenesis is Se-enriched. The Au-Ag alloys, uytenbogaardtite, minerals of the galena-clausthalite series, acanthite-naumannite series, diaphorite, miargyrite, pyrargyrite-proustite, polybasite group, minerals of the tetrahedrite group and andorite branch (andorite IV, andorite VI, Ag-excess fizélyite), freislebenite, and rare Pb-Sb sulphosalts (scaiinite, robinsonite, plagionite) have been identified here. Besides selenides, the most Se-enriched phases are miargyrite, proustite-pyrargyrite, and polybasite-pearceite, whose Se contents are among the highest reported worldwide. In addition, one new phase has been found, corresponding to a Se-analogue of pearceite containing 2.08 - 3.54 apfu Se. The style of mineralization, paragenetic situation, and chemical trends observed in individual minerals are comparable to those of Au-Ag low-sulphidation epithermal Au-Ag mineralizations of the Kremnica and neighboring Štiavnica and Hodruša-Hámre Ore Districts, however, the pronounced enrichment in selenium is a specific feature of the studied vein only.


1969 ◽  
Vol 37 (285) ◽  
pp. 61-74 ◽  
Author(s):  
A. D. Edgar ◽  
A. Mottana ◽  
N. D. Macrae

SummaryIn an attempt to correlate the chemical compositions and cell sizes of omphacites and related pyroxenes, the cell dimensions of fifty-five analysed pyroxenes have been determined, or taken from the literature. Twenty-two of the chemical analyses are new, nineteen of them being done by electron microprobe. Approximately two-thirds of the total number of analyses may be considered first class, the remainder are of doubtful or unknown quality. Cell parameters, determined by X-ray powder diffraction methods, have errors of 0·1 % for the majority of samples, although for some samples taken from the literature errors are unknown.The majority of methods of recalculating omphacite analyses into their end-member molecules are unsuitable for correlation of cell constants with chemistry, mainly due to the impossibility of graphical representation of more than three end-member molecules, and to the non-stoichiometry of these molecules. Using a modification of Tröger's (1962) method of recalculating chloromelanite analyses the present analyses have been recalculated into the diopside-jadeite-acmite and diopside-jadeite-hedenbergite molecules and compared with their determined cell parameters. Because of the gradations in all parameters between these end-member molecules, determination of compositions based on the cell parameters (a, b, c, vol, or β) can only be made within wide limits. However, using a method of projection of compositions from the acmite and hedenbergite apices to the diopside-jadeite join the ratios of diopside to jadeite can be determined for most samples to within ±5 mol%. As there are the most important constituents of most omphacites, this method permits an approximate estimation of omphacite compositions. From a knowledge of the cell sizes of the omphacite a rough indication of the conditions of formation of its host rock may also be obtained.


2021 ◽  
Vol 29 (1) ◽  
pp. 90-107
Author(s):  
Zdeněk Dolníček ◽  
Jana Ulmanová ◽  
Karel Malý ◽  
Jaroslav Havlíček ◽  
Jiří Sejkora

In the Pohled quarry near Havlíčkův Brod town (central part of Czech Republic), texturally and mineralogically simple contaminated anatectic pegmatites form dikes or irregular bodies cementing breccia of host metamorphic rocks (paragneisses, amphibolites) belonging to the Monotonous (Ostrong) Group of the Moldanubicum of the Bohemian Massif. They exhibit signs of intense hydrothermal overprint and also the presence of abundant disseminations, nests and veinlets of ore minerals. A detailed mineralogical study revealed the presence of an extraordinary rich ore assemblage (20 species in total, including one unnamed phase). The oldest minerals are sphalerite (rich in Fe), löllingite, Fe-Co-Ni sulphoarsenides (cobaltite, glaucodot, arsenopyrite, gersdorffite), pyrrhotite, galena and chalcopyrite, in later portion accompanied by inclusions of Bi-minerals (native bismuth, bismuthinite, joséite-A, joséite-B, ikunolite and a Pb-Bi sulphosalt). The composition of the Pb-Bi sulphosalt is equal to Ag,Fe-substituted eclarite; its identity was confirmed also by Raman spectrum. Pyrite is very abundant phase, present probably in several generations. The Fe-Co-Ni thiospinels disseminated in younger chlorite, and represented by siegenite, violarite, grimmite and an unnamed NiFe2S4 phase, are the youngest ore minerals. The mineral association as well as chemical composition of most ore minerals are well comparable to those of local polymetallic ore veins and Alpine-type veins, which give evidence for identical origin of all these ore mineralizations. The formation of pegmatite-hosted ore assemblage was long-lasting multiphase process, which took place at temperatures between ca. 350 and <120 °C during changing fugacities of sulphur, tellurium and oxygen. A distinct enrichment in cobalt and nickel of ore mineralization hosted by pegmatites (in comparison with hydrothermal veins) is explained in terms of pronounced interactions of fluids with amphibolites and serpentinites.


2006 ◽  
Vol 988 ◽  
Author(s):  
Joshu A. Kurzman ◽  
Margret J. Geselbracht

AbstractTwo new Dion-Jacobson type layered perovskite solid solutions, RbCa2-xSrxM3O10 (M = Nb, Ta; 0 ≤ x ≤ 2), were prepared and studied by X-ray powder diffraction, neutron powder diffraction, and Raman spectroscopy. X-ray powder diffraction confirmed single-phase solid solution formation with continuous expansion of the idealized primitive tetragonal unit cell with increasing strontium content. Neutron powder diffraction studies of selected samples revealed lower symmetries and larger unit cells, as necessitated by octahedral tilting within the perovskite slabs, compared to the idealized primitive cell. As the average size of the A-cation in the perovskite slab is varied from Sr2+ to Ca2+, more extensive octahedral tilting is introduced. Vibrational modes of the perovskite slab observed using Raman spectroscopy show subtle changes as a function of calcium/strontium content and more intriguing differences between the isostructural niobates and tantalates.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1124
Author(s):  
Galina Palyanova ◽  
Evgeny Sidorov ◽  
Andrey Borovikov ◽  
Yurii Seryotkin

The copper-containing agates of the Avacha Bay (Eastern Kamchatka, Russia) have been investigated in this study. Optical microscopy, scanning electron microscopy, electron microprobe analysis, X-ray powder diffraction, Raman spectroscopy, and fluid inclusions were used to investigate the samples. It was found that copper mineralization in agates is represented by native copper, copper sulphides (chalcocite, djurleite, digenite, anilite, yarrowite, rarely chalcopyrite) and cuprite. In addition to copper minerals, sphalerite and native silver were also found in the agates. Native copper is localized in a siliceous matrix in the form of inclusions usually less than 100 microns in size—rarely up to 1 mm—forming dendrites and crystals of a cubic system. Copper sulphides are found in the interstices of chalcedony often cementing the marginal parts of spherule aggregates of silica. In addition, they fill the micro veins, which occupy a cross-cutting position with respect to the concentric bands of chalcedony. The idiomorphic appearance of native copper crystals and clear boundaries with the silica matrix suggest their simultaneous crystallization. Copper sulphides, cuprite, and barite micro veins indicate a later deposition. Raman spectroscopy and X-ray powder diffraction results demonstrated that the Avacha Bay agates contained cristobalite in addition to quartz and moganite. The fluid inclusions study shows that the crystalline quartz in the center of the nodule in agates was formed with the participation of solutions containing a very low salt concentration (<0.3 wt.% NaCl equivalent) at the temperature range 110–50 °C and below. The main salt components were CaCl2 and NaCl, with a probable admixture of MgCl2. The copper mineralization in the agates of the Avacha Bay established in the volcanic strata can serve as a direct sign of their metallogenic specialization.


2018 ◽  
Vol 20 (5) ◽  
pp. 3630-3636 ◽  
Author(s):  
C. Cappuccino ◽  
P. P. Mazzeo ◽  
T. Salzillo ◽  
E. Venuti ◽  
A. Giunchi ◽  
...  

This work presents a Raman based approach for the rapid identification of the molecular conformation in a series of new 2,3-thienoimide capped quaterthiophenes.


Clay Minerals ◽  
1997 ◽  
Vol 32 (1) ◽  
pp. 107-121 ◽  
Author(s):  
J. M. Martin-Garcia ◽  
G. Delgado ◽  
M. Sanchez-Maranon ◽  
J. F. Parraga ◽  
R. Delgado

AbstractStructural formulae and other crystallochemical parameters were used to study different species of dioctahedral micas in clay and coarse gravel fractions of horizons from a red soil (Ultic Haploxeralf) in southern Spain. Mineralogical analyses using X-ray powder diffraction, and measurements of theb0parameter revealed dioctahedral micas, illite and paragonite. Structural formulae established from electron microprobe analysis and energy dispersive X-ray analysis showed the illites to be K mica related in elemental composition and structure to muscovite and phengite. The paragonites were found to be closer to ideal mica. Structural formulae for Na-K dioctahedral micas were obtained with crystallochemical characteristics intermediate between those of Na micas and K micas. The possibilty of these micas representing individual mineral phases or intergrowths of Na and K micas is discussed. In the soil profile, micas from the Bt horizon showed the largest crystallochemical changes induced by pedogenesis.


1998 ◽  
Vol 108 (9) ◽  
pp. 655-660 ◽  
Author(s):  
G.A. Tompsett ◽  
R.J. Phillips ◽  
N.M. Sammes ◽  
A.M. Cartner

2013 ◽  
Vol 77 (8) ◽  
pp. 3081-3092 ◽  
Author(s):  
A. R. Kampf ◽  
B. P. Nash ◽  
M. Dini ◽  
A. A. Molina Donoso

AbstractThe new mineral magnesiokoritnigite (IMA 2013-049), ideally Mg(AsO3OH)·H2O, was found at the Torrecillas mine, Salar Grande, Iquique Province, Chile, where it occurs as a secondary alteration phase in association with anhydrite, chudobaite, halite, lavendulan, quartz and scorodite. Crystals of magnesiokoritnigite are colourless to pale-pink, thin to thick laths up to 2 mm long. Laths are elongated on [001], flattened on {010} and exhibit the forms {010}, {110}, {10}, {101}, {031} and {01}. The crystals also occur in dense deep-pink intergrowths. Crystals are transparent with a vitreous lustre. The mineral has a white streak, Mohs hardness of ∼3, brittle tenacity, conchoidal fracture and one perfect cleavage on {101}. The measured and calculated densities are 2.95(3) and 2.935 g cm– 3, respectively. Optically, magnesiokoritnigite is biaxial (+) with α = 1.579(1), β = 1.586(1) and γ = 1.620(1) (measured in white light). The measured 2V is 50(2)° and the calculated 2V is 50°. Dispersion is r < v, medium. The optical orientation is Y ≈ b; Z ^ c = 36° in obtuse β (note pseudomonoclinic symmetry). The mineral is non-pleochroic. The empirical formula, determined from electron-microprobe analyses, is (Mg0.94Cu0.03Mn0.02Ca0.01)Σ 1.00As0.96O5H3.19. Magnesiokoritnigite is triclinic, P, with a = 7.8702(7), b = 15.8081(6), c = 6.6389(14) Å, α = 90.814(6), β = 96.193(6), γ = 90.094(7)°, V = 821.06(19) Å3 and Z = 8. The eight strongest X-ray powder diffraction lines are [dobs Å (I)(hkl)]: 7.96(100)(020), 4.80(54)(101), 3.791(85)(10,210,1,31), 3.242(56)(02,1,012), 3.157(92)(21,30,230), 3.021(61)(11,141,21,221), 2.798(41)(02,032) and 1.908(43)(multiple). The structure, refined to R1 = 5.74% for 2360 Fo > 4σF reflections, shows magnesiokoritnigite to be isostructural with koritnigite and cobaltkoritnigite.


Sign in / Sign up

Export Citation Format

Share Document