scholarly journals Lamination Texture and Its Effects on Reservoir and Geochemical Properties of the Palaeogene Kongdian Formation in the Cangdong Sag, Bohai Bay Basin, China

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1360
Author(s):  
Mengying Li ◽  
Songtao Wu ◽  
Suyun Hu ◽  
Rukai Zhu ◽  
Siwei Meng ◽  
...  

The characteristics of laminae are critical to lacustrine shale strata. They are the keys to the quality of source rocks and reservoirs, as well as engineering operations in shale plays. This study uses organic geochemistry, thin section identification, X-ray diffraction, field emission scanning electron microscopy, and other analytical methods, to reveal the detailed lamination texture and vertical distribution of laminae in the second Member of the Kongdian Formation in Cangdong Sag. The principal results are as follows: (1) A classification of laminae is proposed to characterize reservoir and geochemical properties. The five types of laminae are as follows: feldspar-quartz laminae (FQL), clay laminae (CLL), carbonate laminae (CAL), organic matter laminae (OML), and bioclastic laminae (BCL). There are also four significant lamina combinations (with the increasing TOC values): FQL-CLL combination, FQL-CLL-BCL combination, FQL-CLL-OML combination, and FQL-CAL-CLL-OML combination; (2) differences between laminae occur because of the variability in pore types and structures. There appears to be a greater abundance of intercrystalline pores of clay minerals in the FQL, CAL, BCL, and OML, and well-developed organic pores in the CAL and CLL, and the counterparts of intragranular pores of bioclastic material in the BCL. This detailed characterization provides the following comparative quantification of the thin section porosity of laminae in the second Member of the Kongdian Formation can be differentiated: CAL > FQL > OML > BCL > CLL; (3) differentiation between vertical distributions of laminae is carried out in a single well. The FQL and CLL are widely distributed in all the samples, while the BCL is concentrated in the upper part of the second Member of the Kongdian Formation, and CAL is concentrated in the lower part. This detailed classification method, using geochemical analysis and vertical distribution descriptions, offers a detailed understanding of lamination texture and its effects on reservoir and geochemical properties, which will provide a scientific guidance and technical support to better estimate reservoir quality and to identify new sweet spots in the second Member of the Kongdian Formation in the Cangdong Sag.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Haiping Huang ◽  
Hong Zhang ◽  
Zheng Li ◽  
Mei Liu

To the accurate reconstruction of the hydrocarbon generation history in the Dongying Depression, Bohai Bay Basin, East China, core samples of the Eocene Shahejie Formation from 3 shale oil boreholes were analyzed using organic petrology and organic geochemistry methods. The shales are enriched in organic matter with good to excellent hydrocarbon generation potential. The maturity indicated by measured vitrinite reflectance (%Ro) falls in the range of 0.5–0.9% and increases with burial depth in each well. Changes in biomarker and aromatic hydrocarbon isomer distributions and biomarker concentrations are also unequivocally correlated with the thermal maturity of the source rocks. Maturity/depth relationships for hopanes, steranes, and aromatic hydrocarbons, constructed from core data indicate different well locations, have different thermal regimes. A systematic variability of maturity with geographical position along the depression has been illustrated, which is a dependence on the distance to the Tanlu Fault. Higher thermal gradient at the southern side of the Dongying Depression results in the same maturity level at shallower depth compared to the northern side. The significant regional thermal regime change from south to north in the Dongying Depression may exert an important impact on the timing of hydrocarbon maturation and expulsion at different locations. Different exploration strategies should be employed accordingly.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Zhenhuan Shen ◽  
Bingsong Yu ◽  
Chenyang Bai ◽  
Shujun Han ◽  
Huimin Liu

Calcite veins, which developed parallel to the bedding, are widespread in laminated source rocks in the Eocene Dongying Depression. However, there is a lack of systematic description and classification of the veins. This study presents a systematic characterization of the calcite veins, host rocks, and micritic carbonate laminae by applying petrographic and geochemical methods to understand vein-forming mechanisms. Antitaxial and syntaxial veins are examined. Antitaxial veins contain typical fibrous crystals with the most intense fluorescence, and the median zone of these veins is often the micritic carbonate. Calcite crystals in syntaxial veins develop a blocky morphology of various sizes, indicating obvious growth competition. Data of rare earth elements and trace elements obtained from the micritic laminae, host rocks, and calcite veins are very similar. This indicates that the vein-forming nutrients originated from the carbonate in the host rocks and micritic laminae. The minor difference in C and Sr isotopes between calcite veins and micritic carbonate within the host rock and the negative shift in O isotopes in the veins are caused by ion exchange and dehydration of swelling clay minerals in the burial environment. This further proves that the calcite veins are formed in a closed system. Geochemical analysis suggests that the rocks are in the oil window and have good hydrocarbon potential. Thermal evolution of the acidic fluids generated from organic matter (OM) resulted in the dissolution of carbonate and formed fluid overpressure in the rocks. Fluid overpressure induced the formation of fractures in the interlayer and expanded the veins with the force of crystallization due to fibrous calcite growth. Blocky crystals grow in the fractures from the margins toward the center. Hydrocarbon expulsed via OM maturation in the host rock fills the intercrystalline pores. Moreover, shale with bedding-parallel calcite has the characteristics of high-quality shale oil reservoirs. These characteristics will probably provide guidance for shale oil exploration.


2018 ◽  
Vol 484 (1) ◽  
pp. 121-137 ◽  
Author(s):  
Clifford C. Walters

AbstractPetroleum geochemistry has historically relied on the analysis of field samples – source rocks, oils and gases. Data collected for individual samples are considered characteristic of a specific geographical location and geological position that, when aggregated with data from other samples, can be extrapolated to larger scales. These scale-ups may be as small as a few metres, such as a detailed characterization of source rocks penetrated by a single well, to global, such as petroleum systems that now span continents due to plate tectonics. However, a single sample contains a wealth of information at smaller scales. In situ analytical techniques have improved significantly over the last decade, allowing us to examine sedimentary rocks at ever higher spatial (areal and temporal) resolution. Mass spectrometric imaging is an emerging, enabling technology that can be performed at c. 200 µm (matrix-assisted laser desorption) to 50 nm (nanoSIMS) resolution. X-ray microcomputed tomography (µ-CT) is being applied to examine the storage and transport of petroleum in low-permeability shales and carbonates at spatial resolutions as low as c. 8 µm. Pore architecture in shale, both organic and inorganic, can be modelled from small-angle neutron scattering (SANS) data and imaged directly with helium ion microscopy at c. 1 nm resolution. Atomic force microscopy (AFM) can now resolve the molecular structure of individual asphaltene molecules. Information obtained with these techniques is now revealing the fundamental nature of geological organic materials, opening the span of petroleum geochemistry from atoms to continents.


2021 ◽  
pp. 014459872110310
Author(s):  
Min Li ◽  
Xiongqi Pang ◽  
Guoyong Liu ◽  
Di Chen ◽  
Lingjian Meng ◽  
...  

The fine-grained rocks in the Paleogene Shahejie Formation in Nanpu Sag, Huanghua Depression, Bohai Bay Basin, are extremely important source rocks. These Paleogene rocks are mainly subdivided into organic-rich black shale and gray mudstone. The average total organic carbon contents of the shale and mudstone are 11.5 wt.% and 8.4 wt.%, respectively. The average hydrocarbon (HC)-generating potentials (which is equal to the sum of free hydrocarbons (S1) and potential hydrocarbons (S2)) of the shale and mudstone are 39.3 mg HC/g rock and 28.5 mg HC/g rock, respectively, with mean vitrinite reflectance values of 0.82% and 0.81%, respectively. The higher abundance of organic matter in the shale than in the mudstone is due mainly to paleoenvironmental differences. The chemical index of alteration values and Na/Al ratios reveal a warm and humid climate during shale deposition and a cold and dry climate during mudstone deposition. The biologically derived Ba and Ba/Al ratios indicate high productivity in both the shale and mudstone, with relatively low productivity in the shale. The shale formed in fresh to brackish water, whereas the mudstone was deposited in fresh water, with the former having a higher salinity. Compared with the shale, the mudstone underwent higher detrital input, exhibiting higher Si/Al and Ti/Al ratios. Shale deposition was more dysoxic than mudstone deposition. The organic matter enrichment of the shale sediments was controlled mainly by reducing conditions followed by moderate-to-high productivity, which was promoted by a warm and humid climate and salinity stratification. The organic matter enrichment of the mudstone was less than that of the shale and was controlled by relatively oxic conditions.


2018 ◽  
Vol 36 (5) ◽  
pp. 1229-1244
Author(s):  
Xiao-Rong Qu ◽  
Yan-Ming Zhu ◽  
Wu Li ◽  
Xin Tang ◽  
Han Zhang

The Huanghua Depression is located in the north-centre of Bohai Bay Basin, which is a rift basin developed in the Mesozoic over the basement of the Huabei Platform, China. Permo-Carboniferous source rocks were formed in the Huanghua Depression, which has experienced multiple complicated tectonic alterations with inhomogeneous uplift, deformation, buried depth and magma effect. As a result, the hydrocarbon generation evolution of Permo-Carboniferous source rocks was characterized by discontinuity and grading. On the basis of a detailed study on tectonic-burial history, the paper worked on the burial history, heating history and hydrocarbon generation history of Permo-Carboniferous source rocks in the Huanghua Depression combined with apatite fission track testing and fluid inclusion analyses using the EASY% Ro numerical simulation. The results revealed that their maturity evolved in stages with multiple hydrocarbon generations. In this paper, we clarified the tectonic episode, the strength of hydrocarbon generation and the time–spatial distribution of hydrocarbon regeneration. Finally, an important conclusion was made that the hydrocarbon regeneration of Permo-Carboniferous source rocks occurred in the Late Cenozoic and the subordinate depressions were brought forward as advantage zones for the depth exploration of Permo-Carboniferous oil and gas in the middle-northern part of the Huanghua Depression, Bohai Bay Basin, China.


2011 ◽  
Vol 42 (6) ◽  
pp. 655-677 ◽  
Author(s):  
Sanja Mrkić ◽  
Ksenija Stojanović ◽  
Aleksandar Kostić ◽  
Hans Peter Nytoft ◽  
Aleksandra Šajnović

2015 ◽  
Vol 45 (suppl 1) ◽  
pp. 41-61 ◽  
Author(s):  
José Alejandro Méndez Dot ◽  
José Méndez Baamonde ◽  
Dayana Reyes ◽  
Rommel Whilchy

ABSTRACTCarbonates of Cogollo Group (Apón, Lisure and Maraca formations) constitute the broader calcareous platform system originated during Aptian and Albian of Cretaceous in north-western South America, Maracaibo Basin, Venezuela. On the shallow shelf, a variety of calcareous sedimentary facies were deposited during marine transgressive and regressive cycles. Some of them developed porosity and constitute important hydrocarbon reservoirs. Due to some major marine transgressions, from early Aptian, the anoxic environment and characteristic facies of a pelagic environment moved from the outer slope and basin to the shallow shelf, during specific time intervals, favouring the sedimentation of organic matter-rich facies, which correspond to the oceanic anoxic events (OAEs) 1a and 1b. The source rock of Machiques Member (Apón Formation) was deposited during early Aptian OAE 1a (~ 120 Ma). The source rock of Piché Member, located at the top of the Apón Formation, was deposited during late Aptian OAE 1b (~ 113 Ma). Finally, La Luna Formation, from Cenomanian, that covers the OAE 2 (~ 93 Ma), represents the most important source rock in the Maracaibo Basin. In this way and based on sedimentological and organic geochemistry results from the determinations performed on 247 samples belonging to six cores in the Maracaibo Basin, we propose these two organic-rich levels, deposited on the shallow shelf of the Cogollo Group, as "effective source rocks", additional to La Luna Formation, with oil migration in relatively small distances to the porosity facies.


Sign in / Sign up

Export Citation Format

Share Document