scholarly journals Experimental Study on the Short-Term Uniaxial Creep Characteristics of Sandstone-Coal Composite Samples

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1398
Author(s):  
Dawei Yin ◽  
Feng Wang ◽  
Jicheng Zhang ◽  
Faxin Li ◽  
Chun Zhu ◽  
...  

In this investigation, the uniaxial short-term creep tests with multi-step loading were conducted on the sandstone-coal composite samples, and the characteristics of creep strength, creep deformation, acoustic emission (AE), and creep failure of composite samples were studied, respectively. The creep strength of the composite sample decreased with the stress-level duration, which was mainly determined by the coal and influenced by the interactions with the sandstone. The creep deformation and damage of sandstone weakened the deformation and damage accumulation within the coal, resulting in the larger strength for the composite sample compared with the pure coal sample. The axial creep strain of composite sample generally increased with the stress-level or the stress-level duration under same conditions. The AE characteristics of composite sample were related to the creep strain rate, the stress level, the stress level duration, and the local failure or fracture during creep loading. The micro or macro failure and fracture within the composite sample caused the rise in the axial creep strains and the frequency and intensity of AE signals, especially the macro failure and fracture. The creep failures of composite samples mainly occurred within the coal with the splitting ejection failure accompanied by the local shear failure, and no obvious failures were found within the sandstone. The coal in the composite sample became more broken with the stress-level duration.

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 598
Author(s):  
Yijiang Zong ◽  
Lijun Han ◽  
Yuhao Jin ◽  
Weisheng Zhao ◽  
Lingdong Meng

Short-term and creep tests of fractured sandstone with different degrees of damage prepared using pre-peak and post-peak unloading tests on intact sandstone were carried out using a servo-controlled rock mechanics system. Based on our experimental results, the influence of confining pressure and damage on short-term mechanical behavior of fractured sandstone with different degrees of damage was first analyzed. The results show that the peak strength, residual strength, elastic modulus, and secant modulus of fractured sandstone increase linearly with increasing confining pressure, but decrease with increasing damage. The short-term failure modes depend on the damage and change from typical shear failure modes to multiple shear failure modes with increasing damage. Then, the influence of the differential stress, confining pressure, and the degree of damage on the creep mechanical behavior of fractured specimens was further investigated. The axial instantaneous strain and creep strain increase linearly with increasing differential stress, and the specimens exhibit significant time-dependent behavior under high stress. The steady creep rate increases with increasing stress, but it decreases with increasing confining pressure and damage. However, the long-term strength and creep failure strength of fractured specimens increase linearly with increasing confining pressure, but they decrease linearly with increasing damage. The creep failure modes of fractured specimens are also the main shear failure modes, which are similar to the short-term failure modes.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Bin Yang ◽  
Fu-Zhen Xuan ◽  
Wen-Chun Jiang

Abstract Low stress interrupted creep test, as an interim compromise, can provide essential data for creep deformation design. However, there are no clear guidelines on the characterization of the terminating time for interrupted low-stress creep test. To obtain a suitable terminating time in terms of economy and effectiveness, long-term creep strain data of 9%Cr steels are collected from literatures and their creep deformation characterization is analyzed. First, the variations of normalized time and strain of each creep stage with the stress level are discussed. Then, the effect of the terminating time on final fitted results of Norton–Bailey equation is estimated. Third, the relationship between demarcation points at different creep stages and minimum/steady-state creep rate is analyzed. The results indicate that when the creep rupture life is considered as an important factor for creep design, the tertiary creep stage is of greatest significance due to the largest life fraction and creep strain fraction at low stress level. However, the primary and secondary creep stages are of great significance for design due to their larger contribution to 1% limited creep strain. And the long-term secondary creep data could be extrapolated by combining the primary creep strain data obtained from interrupted creep tests with the time to onset of tertiary creep derived from a similar Monkman–Grant relationship.


Author(s):  
Haruhisa Shigeyama ◽  
Yukio Takahashi ◽  
Jonathan Parker

Creep strain equations of Grade 92 steel which is used in boilers and piping systems of ultra-supercritical (USC) thermal power plants were developed based on the results of creep tests on smooth round bar specimens of three kinds of Grade 92 steels. In these equations, primary creep behavior was represented by a power-law and tertiary creep behavior was described by an exponential function. Creep parameters were determined as a function of creep rupture times which were calculated from stress and absolute temperature. Additionally, generalized creep failure criteria considering the multiaxial stress were established on the basis of results of creep tests on circumferentially notched round bar specimens. These creep strain equations and creep failure criteria were incorporated into finite element analysis software. Then, creep failure analyses were carried out and the resulting deformation behavior and rupture times were compared with the experimental results. Creep rupture lives were predicted with a good accuracy, within a factor of two in most cases.


2013 ◽  
Vol 393 ◽  
pp. 94-101
Author(s):  
Ng Guat Peng ◽  
Badrol Ahmad ◽  
Mohd Razali Muhamad ◽  
M. Ahadlin

Advanced ferritic steels containing 9 wt% Cr are widely used in the construction of supercritical and ultra supercritical boiler components. The microstructure of the as supplied 91 materials consists of a tempered martensite matrix, a fine dispersion of intergranular chromium rich M23C6 precipitates and intragranular carbonitrides MX particles rich in V and Nb. This steel requires post weld heat treatment (PWHT) to produce a tempered microstructure after welding to develop excellent creep strength for high temperature service. Based on past experience, situations may arise whereby the components are subjected to an accidental overshoot in temperature during PWHT. The short excursion to high temperature beyond Ac3 would have resulted in the formation of deleterious phases, for example, soft α-ferrite which has poor creep strength and hard martensite which has a low toughness. In this study, the degraded specimens with soft α ferrite as a result of cooling transformation from 900°C are proven to have a limited creep rupture life where the creep rupture strength dropped remarkably after 1000 hours. As the peak temperature increased to 950°C and 1000°C, hard and brittle martensite was formed on cooling. The creep specimens were found to exhibit better creep strength; most probably the creep behavior was improved by the tempering effect at 600°C during creep tests. Nevertheless, despite the tempering which might have improved the toughness slightly, the high temperature creep rupture stress still had dropped approximately 40%, as compared to the virgin alloys in the range of rupture time from 1,000 hours to 10,000 hours.


2017 ◽  
Vol 45 (4) ◽  
pp. 196 ◽  
Author(s):  
Khaled Z. Ramadan ◽  
Aboqdais A. Saad

This study aimed to evaluate the effect of Superpave short term aging period length and type of additive used in modifying the asphalt binder on the creep behavior of asphalt binder and asphalt mix. Hot-mix asphalt (HMA) specimens were prepared at optimum asphalt content using unmodified asphalt, or asphalt with 4% by weight of SBS or PE. The Universal Testing Machine was used to conduct dynamic creep tests. Tests results indicated that the effect of extending the aging period on creep deformation is highly dependent on type of additive used in preparing the asphalt mix. Extending the aging period more than three hours caused insignificant effect of creep behavior of control asphalt mixes. On the other hand, extending the aging period more than one hour caused insignificant effect of creep behavior of asphalt mixes prepared using SBS additive. While for mixes prepared using PE, the creep deformation continues to decrease as aging period increase.


1987 ◽  
Vol 24 (4) ◽  
pp. 623-629 ◽  
Author(s):  
Anatoly M. Fish

A new method was developed for determining creep parameters, particularly the time to failure, from a single linear plot in which an individual creep curve forms a straight line for primary and tertiary creep. Secondary creep is considered to be a principal point on this line that predetermines the onset of failure. The times to failure can be predicted even when creep tests are not complete by extrapolating information obtained for primary creep. Based upon T. H. Jacka's test data, prediction of creep strain was evaluated using the constitutive equation of A. M. Fish for entire creep and compared with the modified Sinha equation of M. F. Ashby and P. Duval for attenuating creep as well as with models for primary and secondary creep. It is shown that the shape of the creep curves, and thus the creep parameters, varies with stress, temperature, and other factors. Hence, a family of creep curves cannot be described by a constitutive equation with a single set of creep parameters that do not take into account these variations without loss in the accuracy of the creep strain calculations. Key words: frozen soil, polycrystalline, ice, creep, failure, time to failure, attenuation, constitutive modelling.


Holzforschung ◽  
2005 ◽  
Vol 59 (6) ◽  
pp. 662-668 ◽  
Author(s):  
Meng Gong ◽  
Ian Smith

Abstract Low-cycle fatigue (LCF) of spruce under parallel-to-grain compression was investigated to simulate the damage that occurs during extreme events such as hurricanes. Load control was used, with peak stress levels of 75%, 85% and 95% of static compressive strength (C max). Changes in the residual cyclic modulus, cyclic creep strain and modified work density were correlated with the number of load cycles to assess their suitability as damage indicators. Creep tests were also carried out and the strain compared with cyclic creep strain under LCF load. Fatigue and creep tests had a total duration of 10 min. A three-element mathematical model was used to predict the cyclic creep strain. Some key findings were that: (1) the residual cyclic modulus varies with the number of load cycles at a given stress level and decreases with an increase in stress level; (2) cyclic creep strain and pure creep strain are strongly influenced by the peak stress level; and creep specimens fail but fatigue specimens do not at a 95% peak stress level; and (3) the three-element mathematical model is appropriate for predicting cyclic creep strain.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyunwook Choo ◽  
Minhyuk Kwon ◽  
Lamia Touiti ◽  
Young-Hoon Jung

Abstract Aims/hypothesis One of the critical mechanisms determining creep in granular materials is the breakage of soil particles. This study aims at evaluating the time-dependent creep deformation of calcareous sand at low effective stress conditions. Methods K0 creep tests were performed for both calcareous and silica sands at low stresses of 65 and 120 kPa, and the results of creep tests were compared with the results of constant rate of strain (CRS) tests at high stress levels up to 12 MPa. For a quantitative evaluation of the effect of the particle breakage on the creep deformation of calcareous sand, the relative breakage ($$B_{r}$$ B r ) was determined based on the results of sieve analyses. Results The results demonstrate that Tunisia calcareous sand experiences significant particle breakage during creep and the consequent creep deformation at low stress level. The determined $$B_{r}$$ B r after creep at low stress level is comparable with that after the CRS test at high stress level. Conclusions High potential of particle breakage inherited by characteristic minerology of the calcareous Tunisia sand significantly influences the creep deformation at low stress level.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
J. Q. Guo ◽  
F. Li ◽  
X. T. Zheng ◽  
H. C. Shi ◽  
W. Z. Meng

With the development of ultrasupercritical power generation technology, creep strength of high-temperature materials should be considered for safety evaluation and engineering design. However, long-time creep testing should be conducted by traditional creep assessment methods. This paper established a high-efficient prediction method for steady creep strain rate and creep strength based on short-term relaxation tests. Equivalent stress relaxation time and equivalent stress relaxation rate were defined according to stress relaxation characteristics and the Maxwell equation. An accelerated creep prediction approach from short-term stress relaxation tests was proposed by defining the equivalent relaxation rate as the creep rate during the steady stage. Stress relaxation and creep tests using high-temperature material 1Cr10NiMoW2VNbN steel were performed to validate the proposed model. Results showed that the experimental data are in good agreement with those predicted solutions. This indicates that short-term stress relaxation tests can be used to predict long-term creep behavior conveniently and reliably, and the proposed method is suitable for creep strength design and creep life prediction of 9–12%Cr steel used in ultrasupercritical unit at 600 °C.


Author(s):  
Nuri Al-Mohamadi

This paper studies the time-dependent deformation of chalk marl under uniaxial state of stress in a specially built creep rigs, and confined compression stress state. The tests carried out include: six uniaxial creep tests with vertical and lateral deformation measurements, at different stress levels which lasted for 75 to 268 days, six oedometer creep tests under different stress intensities and different loading conditions which lasted for 80 to 250 days. All tested samples were trimmed from 113 mm diameter cores. For uniaxial tests 0.5% axial strain occurred almost instantaneously in the first series subjected to a stress level of 80%. In the second series subjected to a stress level of 40%, the average initial strain was 0.25% which indicate clearly their stress level dependency. After 75 to 150 days creep period, the measured average creep strain was 0.33% for the first series, which represents 57% of the consolidation strain. For series 2 the average creep strain = 0.26%, which represents 54% of the consolidation strain. This implies that the proportional creep ratio Cr = (Et-E1) / E1 is independent of the applied stress level, where Et strain at any time t, E1 strain at one day. For 1-D creep tests E1 and the proportional strain (Et-E1) are not affected significantly by the intensity of applied creep stress, while both of them are highly influenced by the method of load application. From these results, it can be concluded that creep deformation constitutes an important part of the total deformation of chalk marl.


Sign in / Sign up

Export Citation Format

Share Document