scholarly journals Parthenolide Induces Apoptosis and Cell Cycle Arrest of Human 5637 Bladder Cancer Cells In Vitro

Molecules ◽  
2011 ◽  
Vol 16 (8) ◽  
pp. 6758-6768 ◽  
Author(s):  
Guang Cheng ◽  
Liping Xie
Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1381
Author(s):  
So Young Kim ◽  
Hyun Hwangbo ◽  
Min Yeong Kim ◽  
Seon Yeong Ji ◽  
Da Hye Kim ◽  
...  

Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid and generally found in the bark of birch trees (Betula sp.). Although several studies have been reported that BA has diverse biological activities, including anti-tumor effects, the underlying anti-cancer mechanism in bladder cancer cells is still lacking. Therefore, this study aims to investigate the anti-proliferative effect of BA in human bladder cancer cell lines T-24, UMUC-3, and 5637, and identify the underlying mechanism. Our results showed that BA induced cell death in bladder cancer cells and that are accompanied by apoptosis, necrosis, and cell cycle arrest. Furthermore, BA decreased the expression of cell cycle regulators, such as cyclin B1, cyclin A, cyclin-dependent kinase (Cdk) 2, cell division cycle (Cdc) 2, and Cdc25c. In addition, BA-induced apoptosis was associated with mitochondrial dysfunction that is caused by loss of mitochondrial membrane potential, which led to the activation of mitochondrial-mediated intrinsic pathway. BA up-regulated the expression of Bcl-2-accociated X protein (Bax) and cleaved poly-ADP ribose polymerase (PARP), and subsequently activated caspase-3, -8, and -9. However, pre-treatment of pan-caspase inhibitor markedly suppressed BA-induced apoptosis. Meanwhile, BA did not affect the levels of intracellular reactive oxygen species (ROS), indicating BA-mediated apoptosis was ROS-independent. Furthermore, we found that BA suppressed the wound healing and invasion ability, and decreased the expression of Snail and Slug in T24 and 5637 cells, and matrix metalloproteinase (MMP)-9 in UMUC-3 cells. Taken together, this is the first study showing that BA suppresses the proliferation of human bladder cancer cells, which is due to induction of apoptosis, necrosis, and cell cycle arrest, and decrease of migration and invasion. Furthermore, BA-induced apoptosis is regulated by caspase-dependent and ROS-independent pathways, and these results provide the underlying anti-proliferative molecular mechanism of BA in human bladder cancer cells.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 369
Author(s):  
Jochen Rutz ◽  
Sebastian Maxeiner ◽  
Eva Juengel ◽  
Felix K.-H. Chun ◽  
Igor Tsaur ◽  
...  

Bladder cancer patients whose tumors develop resistance to cisplatin-based chemotherapy often turn to natural, plant-derived products. Beneficial effects have been particularly ascribed to polyphenols, although their therapeutic relevance when resistance has developed is not clear. The present study evaluated the anti-tumor potential of polyphenol-rich olive mill wastewater (OMWW) on chemo-sensitive and cisplatin- and gemcitabine-resistant T24, RT112, and TCCSUP bladder cancer cells in vitro. The cells were treated with different dilutions of OMWW, and tumor growth and clone formation were evaluated. Possible mechanisms of action were investigated by evaluating cell cycle phases and cell cycle-regulating proteins. OMWW profoundly inhibited the growth and proliferation of chemo-sensitive as well as gemcitabine- and cisplatin-resistant bladder cancer cells. Depending on the cell line and on gemcitabine- or cisplatin-resistance, OMWW induced cell cycle arrest at different phases. These differing phase arrests were accompanied by differing alterations in the CDK-cyclin axis. Considerable suppression of the Akt-mTOR pathway by OMWW was observed in all three cell lines. Since OMWW blocks the cell cycle through the manipulation of the cyclin-CDK axis and the deactivation of Akt-mTOR signaling, OMWW could become relevant in supporting bladder cancer therapy.


2011 ◽  
Vol 661 (1-3) ◽  
pp. 1-7 ◽  
Author(s):  
Keqiang Yan ◽  
Cheng Zhang ◽  
Jinbo Feng ◽  
Lifang Hou ◽  
Lei Yan ◽  
...  

2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Jun Li ◽  
Yan Li ◽  
Fandong Meng ◽  
Liye Fu ◽  
Chuize Kong

More and more studies have shown that long non-coding RNAs (lncRNAs) play critical roles in various biological processes of bladder cancer, including proliferation, apoptosis, migration and cell cycle arrest. LncRNA long intergenic noncoding RNA 00511 (linc00511) is one of the lncRNAs highly expressed in bladder cancer tissues and cells. However, little is known about the roles and mechanisms of linc00511 in bladder cancer. Here, we demonstrated that linc00511 was highly expressed in bladder cancer tissues and cells. Linc00511 knockdown could cause the cell proliferation suppression and cell cycle arrest, which were mediated by p18, p21, CDK4, cyclin D1 and phosphorylation Rb. Suppressed linc00511 could induce the apoptosis in T24 and BIU87 cells via activating the caspase pathway. Down-regulation of linc00511 could also suppress the migration and invasion of T24 and BIU87 cells. In addition, we found that the expression of linc00511 was negatively correlated with that of miR-15a-3p in the clinical bladder cancer samples. Further mechanistic studies showed that linc00511 knockdown induced proliferation inhibition, and apoptosis increase might be regulated through suppressing the activities of Wnt/β-catenin signaling pathway. Thus, we revealed that knockdown of linc00511 suppressed the proliferation and promoted apoptosis of bladder cancer cells through suppressing the activities of Wnt/β-catenin signaling pathway. Moreover, we suggested that linc00511 could be a potential therapeutic target and novel biomarker in bladder cancer.


Sign in / Sign up

Export Citation Format

Share Document