scholarly journals Anti-Inflammatory and Antioxidant Properties of Peptides Released from β-Lactoglobulin by High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis

Molecules ◽  
2017 ◽  
Vol 22 (6) ◽  
pp. 949 ◽  
Author(s):  
Fatemeh Bamdad ◽  
Seonghee Bark ◽  
Chul Hee Kwon ◽  
Joo-Won Suh ◽  
Hoon Sunwoo
2014 ◽  
Vol 10 ◽  
pp. 169-177 ◽  
Author(s):  
Sunyoon Jung ◽  
Mak-Soon Lee ◽  
Yoonjin Shin ◽  
Chong-Tai Kim ◽  
In-Hwan Kim ◽  
...  

2013 ◽  
Vol 1830 (10) ◽  
pp. 4974-4980 ◽  
Author(s):  
Daniela Russo ◽  
Maria Grazia Ortore ◽  
Francesco Spinozzi ◽  
Paolo Mariani ◽  
Camille Loupiac ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 167
Author(s):  
Yi-Yuan Ke ◽  
Yuan-Tay Shyu ◽  
Sz-Jie Wu

Isothiocyanates (ITCs) are important functional components of cruciferous vegetables. The principal isothiocyanate molecule in broccoli is sulforaphane (SFN), followed by erucin (ERN). They are sensitive to changes in temperature, especially high temperature environments where they are prone to degradation. The present study investigates the effects of high hydrostatic pressure on isothiocyanate content, myrosinase activity, and other functional components of broccoli, and evaluates its anti-inflammatory and antioxidant effects. Broccoli samples were treated with different pressures and for varying treatment times; 15 min at 400 MPa generated the highest amounts of isothiocyanates. The content of flavonoids and vitamin C were not affected by the high-pressure processing strategy, whereas total phenolic content (TPC) exhibited an increasing tendency with increasing pressure, indicating that high-pressure processing effectively prevents the loss of the heat-sensitive components and enhances the nutritional content. The activity of myrosinase (MYR) increased after high-pressure processing, indicating that the increase in isothiocyanate content is related to the stimulation of myrosinase activity by high-pressure processing. In other key enzymes, the ascorbate peroxidase (APX) activity was unaffected by high pressure, whereas peroxidase (POD) and polyphenol oxidase (PPO) activity exhibited a 1.54-fold increase after high-pressure processing, indicating that high pressures can effectively destroy oxidases and maintain food quality. With regards to efficacy evaluation, NO production was inhibited and the expression levels of inducible nitric oxide synthase (iNOS) and Cyclooxygenase-2 (COX-2) were decreased in broccoli treated with high pressures, whereas the cell viability remained unaffected. The efficacy was more significant when the concentration of SFN was 60 mg·mL−1. In addition, at 10 mg·mL−1 SFN, the reduced/oxidized glutathione (GSH/GSSG) ratio in inflammatory macrophages increased from 5.99 to 9.41. In conclusion, high-pressure processing can increase the isothiocyanate content in broccoli, and has anti-inflammatory and anti-oxidant effects in cell-based evaluation strategies, providing a potential treatment strategy for raw materials or additives used in healthy foods.


1996 ◽  
Vol 63 (1) ◽  
pp. 111-118 ◽  
Author(s):  
Henrik Stapelfeldt ◽  
Per Hjort Petersen ◽  
Kristian Rotvig Kristiansen ◽  
Karsten Bruun Qvist ◽  
Leif H. Skibsted

SummaryHydrolysis of β-lactoglobulin B (β-lg B) by pepsin, a process slow at ambient conditions, is facilitated at a moderately high hydrostatic pressure such as 300 MPa, corresponding to an apparent volume of activation ΔV# = −63 ml mol−1 at pH 2·5, 30 °C and Γ/2=0·16. Digestion of β-lg by trypsin and thermolysin is likewise enhanced by pressure, and the pressure effect has been traced to pressure denaturation of β-lg B, which by high-pressure fluorescence spectroscopy has been shown to have a large negative volume of reaction, ΔV° = −98 ml mol−1, at pH 6·7, 30 °C and Γ/2 = 0·16. Pressure denaturation is only slowly reversed following release of pressure and the enhanced digestibility is maintained at ambient pressure for several hours.


Sign in / Sign up

Export Citation Format

Share Document