scholarly journals Causal Discovery Combining K2 with Brain Storm Optimization Algorithm

Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1729
Author(s):  
Yinghan Hong ◽  
Zhifeng Hao ◽  
Guizhen Mai ◽  
Han Huang ◽  
Arun Kumar Sangaiah

Exploring and detecting the causal relations among variables have shown huge practical values in recent years, with numerous opportunities for scientific discovery, and have been commonly seen as the core of data science. Among all possible causal discovery methods, causal discovery based on a constraint approach could recover the causal structures from passive observational data in general cases, and had shown extensive prospects in numerous real world applications. However, when the graph was sufficiently large, it did not work well. To alleviate this problem, an improved causal structure learning algorithm named brain storm optimization (BSO), is presented in this paper, combining K2 with brain storm optimization (K2-BSO). Here BSO is used to search optimal topological order of nodes instead of graph space. This paper assumes that dataset is generated by conforming to a causal diagram in which each variable is generated from its parent based on a causal mechanism. We designed an elaborate distance function for clustering step in BSO according to the mechanism of K2. The graph space therefore was reduced to a smaller topological order space and the order space can be further reduced by an efficient clustering method. The experimental results on various real-world datasets showed our methods outperformed the traditional search and score methods and the state-of-the-art genetic algorithm-based methods.

2020 ◽  
Vol 34 (04) ◽  
pp. 6853-6860
Author(s):  
Xuchao Zhang ◽  
Xian Wu ◽  
Fanglan Chen ◽  
Liang Zhao ◽  
Chang-Tien Lu

The success of training accurate models strongly depends on the availability of a sufficient collection of precisely labeled data. However, real-world datasets contain erroneously labeled data samples that substantially hinder the performance of machine learning models. Meanwhile, well-labeled data is usually expensive to obtain and only a limited amount is available for training. In this paper, we consider the problem of training a robust model by using large-scale noisy data in conjunction with a small set of clean data. To leverage the information contained via the clean labels, we propose a novel self-paced robust learning algorithm (SPRL) that trains the model in a process from more reliable (clean) data instances to less reliable (noisy) ones under the supervision of well-labeled data. The self-paced learning process hedges the risk of selecting corrupted data into the training set. Moreover, theoretical analyses on the convergence of the proposed algorithm are provided under mild assumptions. Extensive experiments on synthetic and real-world datasets demonstrate that our proposed approach can achieve a considerable improvement in effectiveness and robustness to existing methods.


2020 ◽  
Vol 34 (01) ◽  
pp. 1153-1160 ◽  
Author(s):  
Xinshi Zang ◽  
Huaxiu Yao ◽  
Guanjie Zheng ◽  
Nan Xu ◽  
Kai Xu ◽  
...  

Using reinforcement learning for traffic signal control has attracted increasing interests recently. Various value-based reinforcement learning methods have been proposed to deal with this classical transportation problem and achieved better performances compared with traditional transportation methods. However, current reinforcement learning models rely on tremendous training data and computational resources, which may have bad consequences (e.g., traffic jams or accidents) in the real world. In traffic signal control, some algorithms have been proposed to empower quick learning from scratch, but little attention is paid to learning by transferring and reusing learned experience. In this paper, we propose a novel framework, named as MetaLight, to speed up the learning process in new scenarios by leveraging the knowledge learned from existing scenarios. MetaLight is a value-based meta-reinforcement learning workflow based on the representative gradient-based meta-learning algorithm (MAML), which includes periodically alternate individual-level adaptation and global-level adaptation. Moreover, MetaLight improves the-state-of-the-art reinforcement learning model FRAP in traffic signal control by optimizing its model structure and updating paradigm. The experiments on four real-world datasets show that our proposed MetaLight not only adapts more quickly and stably in new traffic scenarios, but also achieves better performance.


Author(s):  
Shuji Hao ◽  
Peilin Zhao ◽  
Yong Liu ◽  
Steven C. H. Hoi ◽  
Chunyan Miao

Relative similarity learning~(RSL) aims to learn similarity functions from data with relative constraints. Most previous algorithms developed for RSL are batch-based learning approaches which suffer from poor scalability when dealing with real-world data arriving sequentially. These methods are often designed to learn a single similarity function for a specific task. Therefore, they may be sub-optimal to solve multiple task learning problems. To overcome these limitations, we propose a scalable RSL framework named OMTRSL (Online Multi-Task Relative Similarity Learning). Specifically, we first develop a simple yet effective online learning algorithm for multi-task relative similarity learning. Then, we also propose an active learning algorithm to save the labeling cost. The proposed algorithms not only enjoy theoretical guarantee, but also show high efficacy and efficiency in extensive experiments on real-world datasets.


2021 ◽  
Author(s):  
Pankaj Kumar ◽  
Jayanarayanan Kuttippurath ◽  
Adway Mitra

Abstract The discovery of causal structures behind a phenomenon under investigation has been at the heart of scientific inquiry since the beginning. Randomized control trials, the gold standard for causal analysis, may not always be feasible, such as in the domain of climate sciences. In the absence of interventional data, we are forced to depend only on observational data. This study demonstrates the application of one such causal discovery algorithm using a neural network for identifying the drivers of surface ozone variability in Antarctica. The analyses reveal the overarching influence of the stratosphere on the surface ozone variability in Antarctica, buttressed by the southern annular mode and tropospheric wave forcing in mid-latitudes. We find no significant and robust evidence for the influence of tropical teleconnection on the ground-level ozone in Antarctica. As the field of atmospheric science is now replete with a massive stock of observational data, both satellite and ground-based, this tool for automated causal structure discovery might prove to be invaluable for scientific investigation and flawless decision making.


2021 ◽  
Vol 12 (5) ◽  
pp. 1-27
Author(s):  
Georgios Koutroulis ◽  
Leo Botler ◽  
Belgin Mutlu ◽  
Konrad Diwold ◽  
Kay Römer ◽  
...  

Recovering causality from copious time series data beyond mere correlations has been an important contributing factor in numerous scientific fields. Most existing works assume linearity in the data that may not comply with many real-world scenarios. Moreover, it is usually not sufficient to solely infer the causal relationships. Identifying the correct time delay of cause-effect is extremely vital for further insight and effective policies in inter-disciplinary domains. To bridge this gap, we propose KOMPOS, a novel algorithmic framework that combines a powerful concept from causal discovery of additive noise models with graphical ones. We primarily build our structural causal model from multivariate adaptive regression splines with inherent additive local nonlinearities, which render the underlying causal structure more easily identifiable. In contrast to other methods, our approach is not restricted to Gaussian or non-Gaussian noise due to the non-parametric attribute of the regression method. We conduct extensive experiments on both synthetic and real-world datasets, demonstrating the superiority of the proposed algorithm over existing causal discovery methods, especially for the challenging cases of autocorrelated and non-stationary time series.


Author(s):  
Peng Hu ◽  
Rong Du ◽  
Yao Hu ◽  
Nan Li

Nowadays, item-item recommendation plays an important role in modern recommender systems. Traditionally, this is either solved by behavior-based collaborative filtering or content-based meth- ods. However, both kinds of methods often suffer from cold-start problems, or poor performance due to few behavior supervision; and hybrid methods which can leverage the strength of both kinds of methods are needed. In this paper, we propose a semi-parametric embedding framework for this problem. Specifically, the embedding of an item is composed of two parts, i.e., the parametric part from content information and the non-parametric part designed to encode behavior information; meanwhile, a deep learning algorithm is proposed to learn two parts simultaneously. Extensive experiments on real-world datasets demonstrate the effectiveness and robustness of the proposed method.


Author(s):  
Maxime Peyrard ◽  
Robert West

Causal discovery, the task of automatically constructing a causal model from data, is of major significance across the sciences. Evaluating the performance of causal discovery algorithms should ideally involve comparing the inferred models to ground-truth models available for benchmark datasets, which in turn requires a notion of distance between causal models. While such distances have been proposed previously, they are limited by focusing on graphical properties of the causal models being compared. Here, we overcome this limitation by defining distances derived from the causal distributions induced by the models, rather than exclusively from their graphical structure. Pearl and Mackenzie [2018] have arranged the properties of causal models in a hierarchy called the ``ladder of causation'' spanning three rungs: observational, interventional, and counterfactual. Following this organization, we introduce a hierarchy of three distances, one for each rung of the ladder. Our definitions are intuitively appealing as well as efficient to compute approximately. We put our causal distances to use by benchmarking standard causal discovery systems on both synthetic and real-world datasets for which ground-truth causal models are available.


2021 ◽  
Vol 21 (3) ◽  
pp. 1-17
Author(s):  
Wu Chen ◽  
Yong Yu ◽  
Keke Gai ◽  
Jiamou Liu ◽  
Kim-Kwang Raymond Choo

In existing ensemble learning algorithms (e.g., random forest), each base learner’s model needs the entire dataset for sampling and training. However, this may not be practical in many real-world applications, and it incurs additional computational costs. To achieve better efficiency, we propose a decentralized framework: Multi-Agent Ensemble. The framework leverages edge computing to facilitate ensemble learning techniques by focusing on the balancing of access restrictions (small sub-dataset) and accuracy enhancement. Specifically, network edge nodes (learners) are utilized to model classifications and predictions in our framework. Data is then distributed to multiple base learners who exchange data via an interaction mechanism to achieve improved prediction. The proposed approach relies on a training model rather than conventional centralized learning. Findings from the experimental evaluations using 20 real-world datasets suggest that Multi-Agent Ensemble outperforms other ensemble approaches in terms of accuracy even though the base learners require fewer samples (i.e., significant reduction in computation costs).


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1549
Author(s):  
Robert D. Chambers ◽  
Nathanael C. Yoder ◽  
Aletha B. Carson ◽  
Christian Junge ◽  
David E. Allen ◽  
...  

Collar-mounted canine activity monitors can use accelerometer data to estimate dog activity levels, step counts, and distance traveled. With recent advances in machine learning and embedded computing, much more nuanced and accurate behavior classification has become possible, giving these affordable consumer devices the potential to improve the efficiency and effectiveness of pet healthcare. Here, we describe a novel deep learning algorithm that classifies dog behavior at sub-second resolution using commercial pet activity monitors. We built machine learning training databases from more than 5000 videos of more than 2500 dogs and ran the algorithms in production on more than 11 million days of device data. We then surveyed project participants representing 10,550 dogs, which provided 163,110 event responses to validate real-world detection of eating and drinking behavior. The resultant algorithm displayed a sensitivity and specificity for detecting drinking behavior (0.949 and 0.999, respectively) and eating behavior (0.988, 0.983). We also demonstrated detection of licking (0.772, 0.990), petting (0.305, 0.991), rubbing (0.729, 0.996), scratching (0.870, 0.997), and sniffing (0.610, 0.968). We show that the devices’ position on the collar had no measurable impact on performance. In production, users reported a true positive rate of 95.3% for eating (among 1514 users), and of 94.9% for drinking (among 1491 users). The study demonstrates the accurate detection of important health-related canine behaviors using a collar-mounted accelerometer. We trained and validated our algorithms on a large and realistic training dataset, and we assessed and confirmed accuracy in production via user validation.


Data ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Ahmed Elmogy ◽  
Hamada Rizk ◽  
Amany M. Sarhan

In data mining, outlier detection is a major challenge as it has an important role in many applications such as medical data, image processing, fraud detection, intrusion detection, and so forth. An extensive variety of clustering based approaches have been developed to detect outliers. However they are by nature time consuming which restrict their utilization with real-time applications. Furthermore, outlier detection requests are handled one at a time, which means that each request is initiated individually with a particular set of parameters. In this paper, the first clustering based outlier detection framework, (On the Fly Clustering Based Outlier Detection (OFCOD)) is presented. OFCOD enables analysts to effectively find out outliers on time with request even within huge datasets. The proposed framework has been tested and evaluated using two real world datasets with different features and applications; one with 699 records, and another with five millions records. The experimental results show that the performance of the proposed framework outperforms other existing approaches while considering several evaluation metrics.


Sign in / Sign up

Export Citation Format

Share Document