scholarly journals Characterization of Arginine Catabolism by Lactic Acid Bacteria Isolated from Kimchi

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3049 ◽  
Author(s):  
Hyelyeon Hwang ◽  
Jong-Hee Lee

Kimchi fermentation depends on diverse lactic acid bacteria, which convert raw materials into numerous metabolites that contribute to the taste of food. Amino acids and saccharides are important primary metabolites. Arginine is nearly exhausted during kimchi fermentation, whereas the concentrations of other amino acids are reported not to increase or decrease dramatically. These phenomena could imply that arginine is an important nutritional component among the amino acids during kimchi fermentation. In this study, we investigated the arginine-catabolism pathway of seven lactic acid bacteria isolated from kimchi and evaluated the products of arginine catabolism (citrulline and ornithine) associated with the bacteria. The arginine content dramatically decreased in cultures of Lactobacillus brevis and Weissella confusa from 300 μg/mL of arginine to 0.14 ± 0.19 and 1.3 ± 0.01 μg/mL, respectively, after 6 h of cultivation. Citrulline and ornithine production by L. brevis and W. confusa showed a pattern that was consistent with arginine catabolism. Interestingly, Pediococcus pentosaceus, Lactobacillus plantarum, Leuconostoc mesenteroides, and Leuconostoc lactis did not show increased citrulline levels after arginine was added. The ornithine contents were higher in all bacteria except for L. lactis after adding arginine to the culture. These results were consistent with the absence of the arginine deiminase gene among the lactic acid bacteria. Arginine consumption and ornithine production were monitored and compared with lactic acid bacteria by metagenomics analysis, which showed that the increment of ornithine production correlated positively with lactic acid bacteria growth.

2002 ◽  
Vol 68 (12) ◽  
pp. 6193-6201 ◽  
Author(s):  
Maria De Angelis ◽  
Liberato Mariotti ◽  
Jone Rossi ◽  
Maurizio Servili ◽  
Patrick F. Fox ◽  
...  

ABSTRACT The cytoplasmic extracts of 70 strains of the most frequently isolated sourdough lactic acid bacteria were screened initially for arginine deiminase (ADI), ornithine transcarbamoylase (OTC), and carbamate kinase (CK) activities, which comprise the ADI (or arginine dihydrolase) pathway. Only obligately heterofermentative strains such as Lactobacillus sanfranciscensis CB1; Lactobacillus brevis AM1, AM8, and 10A; Lactobacillus hilgardii 51B; and Lactobacillus fructivorans DD3 and DA106 showed all three enzyme activities. Lactobacillus plantarum B14 did not show CK activity. L. sanfranciscensis CB1 showed the highest activities, and the three enzymes were purified from this microorganism to homogeneity by several chromatographic steps. ADI, OTC, and CK had apparent molecular masses of ca. 46, 39, and 37 kDa, respectively, and the pIs were in the range of 5.07 to 5.2. The OTCs, CKs, and especially ADIs were well adapted to pH (acidic, pH 3.5 to 4.5) and temperature (30 to 37°C) conditions which are usually found during sourdough fermentation. Internal peptide sequences of the three enzymes had the highest level of homology with ADI, OTC, and CK of Lactobacillus sakei. L. sanfranciscensis CB1 expressed the ADI pathway either on MAM broth containing 17 mM arginine or during sourdough fermentation with 1 to 43 mM added arginine. Two-dimensional electrophoresis showed that ADI, OTC, and CK were induced by factors of ca. 10, 4, and 2 in the whole-cell extract of cells grown in MAM broth containing 17 mM arginine compared to cells cultivated without arginine. Arginine catabolism in L. sanfranciscensis CB1 depended on the presence of a carbon source and arginine; glucose at up to ca. 54 mM did not exert an inhibitory effect, and the pH was not relevant for induction. The pH of sourdoughs fermented by L. sanfranciscensis CB1 was dependent on the amount of arginine added to the dough. A low supply of arginine (6 mM) during sourdough fermentation by L. sanfranciscensis CB1 enhanced cell growth, cell survival during storage at 7°C, and tolerance to acid environmental stress and favored the production of ornithine, which is an important precursor of crust aroma compounds.


Microbiology ◽  
2009 ◽  
Vol 155 (5) ◽  
pp. 1726-1737 ◽  
Author(s):  
Takaomi Wada ◽  
Masafumi Noda ◽  
Fumi Kashiwabara ◽  
Hyung Joon Jeon ◽  
Ayano Shirakawa ◽  
...  

In this study we isolated over 250 lactic acid bacteria (LAB) candidates from fruit, flowers, vegetables and a fermented food to generate an LAB library. One strain, designated 925A, isolated from kimchi (a traditional Korean fermented dish made from Chinese cabbage) produced a novel type of bacteriocin, brevicin 925A, which is effective against certain LAB, including strains of Lactobacillus, Enterococcus, Streptococcus, Bacillus and Listeria. Strain 925A, identified as Lactobacillus brevis, harboured at least four plasmids and we determined the entire nucleotide sequence of each one. The four plasmids were designated pLB925A01–04, and have molecular sizes of 1815, 3524, 8881 and 65 037 bp, respectively. We obtained bacteriocin non-producing derivatives by treatment of strain 925A with novobiocin. All of these derivatives, which were susceptible to their own antibacterial product, lost the largest plasmid, pLB925A04, suggesting that the genes for bacteriocin biosynthesis (breB and breC) and immunity (breE) are located on pLB925A04. The partial amino acid sequence of purified brevicin 925A and sequence analysis of pLB925A04 showed that breB is the structural gene for brevicin 925A. We constructed a shuttle vector (pLES003, 6134 bp) that can replicate in both Escherichia coli and LAB such as Lactobacillus plantarum, Lb. brevis, Lactobacillus helveticus, Lactobacillus hilgardii and Enterococcus hirae. To determine the function of gene breE, which displays no significant similarity to any other sequences in the blast search database, the gene was inserted into pLES003. A pLB925A04-cured derivative transformed with pLES003 carrying breE acquired immunity to brevicin 925A, suggesting that breE encodes an immunity protein.


2019 ◽  
Vol 49 (2) ◽  
pp. 235-244
Author(s):  
Ольга Пономарёва ◽  
Olga Ponomareva ◽  
Екатерина Борисова ◽  
Ekaterina Borisova ◽  
Игорь Прохорчик ◽  
...  

Sour ales, traditionally produced in Belgium, Britain, and Germany, have gained wide popularity in America, Europe, and Russia. The paper provides generalized and systematized scientific data related to the technological and biotechnological characteristics of raw materials used in sour ales. The study featured malt, grain products (wheat, corn, rice, barley, rye, and oats), hop, Lactobacillus lactic-acid bacteria, Saccharomyces cerevisiae brewer’s yeast, and Brettanomyces yeast. Sour ales are usually prepared from a combination of different malts, such as Pilsner, Vienna, and Munich. Pilsner is used for malt type, while Munich is mostly employed as a basisfor dark varieties of sour ales. The review presents some of the flavor characteristics of malt types, as well as their recommended content. Unmalted grain products have a significant impact on the technological process and the organoleptic characteristics of acid ales. Unmalted wheat is used for Belgian sour ales, such as Lambic, Fruit Lambic, and Gueuze, in the amount of 30–40%, while 50 % are used in the German variety of Berliner Weiss. In general, the degree of wort pitching for sour ales should not exceed 8-15 IBU, since hop acids kill lactic-acid bacteria. Common hop varieties with a low or medium content of α-acids were found optimal for sour ale production. For example, for Flanders Red Ale, producers most often use one of the best traditional European varieties, namely Saazer (Zatetsky).The following types of homo- and heterofermentative lactic-acid bacteria are recommended for ale production technology: Lactobacillus delbrueckii, Lactobacillus brevis, Lactobacillus buchneri, Lactobacillus fermentum, and Lactobacillus plantarum. The aromatic characteristics of the wort fermented with lactic acid bacteria are described in the following terms: bread, yeast, honey, oil, cider, etc. Lactic acid bacteria are used in sour ales production, as well as Brettanomyces yeasts. Currently, brewing widely employstwo types of yeast: Brettanomyces bruxellensis and Brettanomyces anomalus. They give the drink a specific taste and aroma, due to hydroxycinnamic acids (HCAs) and esters (ethyl acetate, ethyl lactate, phenylacetate, etc.). The paper contains some practical recommendations on the use of specific types of raw materials to produce sour ales with a given sensory profile.


2018 ◽  
Vol 15 (3) ◽  
pp. 737-746
Author(s):  
Guetouache Mourad ◽  
Guessas Bettache

Morphological, physiological and biochemical characteristics were employed to identify lactic acid bacteria (LAB), isolated from traditional (butter) was collected from different rural areas of the province of Djelfa. Among 177 isolates, 79 lactic acid bacterial (LAB) strains were isolated and purified. The results obtained show that the isolates obtained belong to the following genus Lactobacillus, Lactococcus, Enterococci and Leuconostoc characterize the biodiversity of this traditional butter studied. Only Gram-positive and catalase negative isolates were identified at species level. The most common LAB belonging to the species Lactobacillus alimentarius (15.19 %), Lactobacillus plantarum (22.78 %), Lactobacillus fermentum (18.99 %), Lactobacillus brevis (06.33 %), Lactococcus lactis (12.66 %), Lactococcus cremoris (06.33 %), Leuconostoc mesenteroides (06.33 %) and Enterococcus faecalis (11.39 %). The samples pH average was 6.06 ± 0.34, microbiological analysis results were; total mesophilic aerobic flora (TMAF) (2, 22 ± 0, 68).10 3cfu/ml, total coliforms 0,54 ± 0.56 ufc/ml, fecal coliforms 0,6 ± 0.50 cfu/ml, yeast (0,48 ± 0.31). 10 cfu/ml, Staphylococcus aureus, Salmonella and moulds weren’t detected.


2014 ◽  
Vol 7 (3) ◽  
pp. 313-320 ◽  
Author(s):  
M. Piotrowska ◽  
J. Roszak ◽  
M. Stańczyk ◽  
J. Palus ◽  
E. Dziubałtowska ◽  
...  

The aim of this study was to examine three strains of the yeast Saccharomyces cerevisiae and three strains of lactic acid bacteria belonging to the genus Lactobacillus for their antifungal activity against the ochratoxin A producer Aspergillus westerdijkiae, as well as for their effect on OTA genotoxicity and cytotoxicity. When inoculated simultaneously, fungal growth was completely inhibited by S. cerevisiae. In the case of lactic acid bacteria, growth inhibition also occurred but to a less extent. A significant decrease in toxin production in co-culture with the yeast strains and LAB was observed. The supernatant of 24-h-old cultures of yeast strains in medium with OTA did not influence significantly the viability of porcine kidney epithelial LLC-PK1 cell line, whereas the supernatant from the LAB increased the viability compared to the control. Regarding genotoxicity, a decreased fragmentation of DNA was observed in the presence of the supernatant from wine and brewing yeasts, and Lactobacillus brevis strains. Based on the results obtained, it might be concluded that S. cerevisiae yeasts and lactic acid bacteria could be used to minimise the negative effect of OTA on humans and animals.


2019 ◽  
Vol 12 (1) ◽  
pp. 54-69 ◽  
Author(s):  
É. Laslo ◽  
É. György ◽  
A. Czikó

Abstract Fermented meat products represent an important segment of our alimentation. Obtaining these products is based on beneficial microorganism activity. In the case of traditional food products, these are commercial starters or autochthonous microflora. Fermentation of raw materials is mainly done by sugar metabolization of lactic acid bacteria (LAB). In addition, these microorganisms can have other beneficial properties too such as probiotic properties, antimicrobial compound production abilities, etc. In order to meet consumer demands, starter cultures are continuously developed to produce high-quality, healthy, and tasty products, thus contributing to guaranteeing microbiological safety and to improving one or more sensory characteristics, technological, nutritional, or health properties of the fermented products. The aim of our research is to determine the technological properties of autochthonous lactic acid bacteria originated from commercial fresh sausages in order to select and use them as potential starter cultures in the meat industry. In our work, we determined the relevant characteristics (such as salt tolerance, proteolytic activity, antimicrobial activity, and antibiotic resistance) of bacteria isolated from 16 fresh sausages. Based on our results, the studied bacterial isolates originated from sausages could be potentially used as autochthonous meat starter cultures.


2018 ◽  
Vol 10 (2) ◽  
pp. 298-305
Author(s):  
Ferymon Mahulette ◽  
Nisa Rachmania Mubarik ◽  
Antonius Suwanto ◽  
Widanarni Widanarni

Based on the raw materials, inasua consists of two types namely inasua with sap and inasua without sap. Research of inasua with sap has never been done and considered as the novelty of this research. The sensory characteristics and shelf life of two types of inasua were different. The research aims to analyze the microbiological and physicochemical characteristics of two types of inasua during fermentation. The microbiological analyzes include the total number of bacteria and lactic acid bacteria, while physicochemical analyzes include temperature, pH, water activity, proximate analysis, salt, alcohol, histamine, amino acids and fatty acids contents. The total number of bacteria and lactic acid bacteria has decreased during fermentation. At the end of the fermentation the total number of bacteria and lactic acid bacteria inasua with sap were 3.2x107 CFU/g and 3.0x107 CFU/g, while inasua without sap were 5.4x105CFU/g and 3.5x105 CFU/g, respectively. The moisture, protein, alcohol contents and water activity decreased, otherwise the salt, fat, ash, amino acids, and fatty acids contents increased during fermentation. Generally, microbiological and physicochemical characteristics of inasua with sap was better than inasua without sap. The results of this research to improve the quality of this fermentation product in the future.


2021 ◽  
Vol 7 (8) ◽  
pp. 658
Author(s):  
Kotaro Ito ◽  
Asahi Matsuyama

Soy sauce is a traditional Japanese condiment produced from the fermentation of soybeans, wheat, and salt by three types of microorganisms, namely koji molds, halophilic lactic acid bacteria, and salt-tolerant yeast. The delicate balance between taste, aroma, and color contributes to the characteristic delicious flavor imparted by soy sauce. In soy sauce brewing, protein and starch of the raw materials are hydrolyzed into amino acids and sugars by enzymes derived from koji molds. These enzymatically hydrolyzed products not only directly contribute to the taste but are further metabolized by lactic acid bacteria and yeasts to most of organic acids and aromatic compounds, resulting in its distinctive flavor and aroma. The color of the soy sauce is also due to the chemical reactions between amino acids and sugars during fermentation. Therefore, koji mold, which produces various enzymes for the breakdown of raw materials, is an essential microorganism in soy sauce production and plays an essential role in fermenting the ingredients. In this review, we describe the manufacturing process of Japanese soy sauce, the characteristics of koji molds that are suitable for soy sauce brewing, and the key enzymes produced by koji molds and their roles in the degradation of materials during soy sauce fermentation, focusing on the production of umami taste in soy sauce brewing.


Sign in / Sign up

Export Citation Format

Share Document