scholarly journals Recent Advances in Applications of Acidophilic Fungi to Produce Chemicals

Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 786 ◽  
Author(s):  
Rehman Javaid ◽  
Aqsa Sabir ◽  
Nadeem Sheikh ◽  
Muhammad Ferhan

Processing of fossil fuels is the major environmental issue today. Biomass utilization for the production of chemicals presents an alternative to simple energy generation by burning. Lignocellulosic biomass (cellulose, hemicellulose and lignin) is abundant and has been used for variety of purposes. Among them, lignin polymer having phenyl-propanoid subunits linked together either through C-C bonds or ether linkages can produce chemicals. It can be depolymerized by fungi using their enzyme machinery (laccases and peroxidases). Both acetic acid and formic acid production by certain fungi contribute significantly to lignin depolymerization. Fungal natural organic acids production is thought to have many key roles in nature depending upon the type of fungi producing them. Biological conversion of lignocellulosic biomass is beneficial over physiochemical processes. Laccases, copper containing proteins oxidize a broad spectrum of inorganic as well as organic compounds but most specifically phenolic compounds by radical catalyzed mechanism. Similarly, lignin peroxidases (LiP), heme containing proteins perform a vital part in oxidizing a wide variety of aromatic compounds with H2O2. Lignin depolymerization yields value-added compounds, the important ones are aromatics and phenols as well as certain polymers like polyurethane and carbon fibers. Thus, this review will provide a concept that biological modifications of lignin using acidophilic fungi can generate certain value added and environmentally friendly chemicals.

Author(s):  
Rehman Javaid ◽  
Aqsa Sabir ◽  
Nadeem Sheikh ◽  
Muhammad Ferhan

The processing of fossil fuels is the major environmental issue today which should be lessen. Biomass is gaining much interest these days as an alternate to energy generation. Lignocellulosic biomass (cellulose, hemicellulose and lignin) is abundant and has been used for a variety of purposes. Among them, the lignin polymer having phenyl-propanoid subunits linked together through C-C bonds or ether linkages, can produce numerous chemicals. It can be depolymerized by microbial activity together with certain enzymes (laccases and peroxidases). Both acetic acid and formic acid production by certain fungi contribute significantly to lignin depolymerization. Natural organic acids production by fungi has many key roles in nature that are strictly dependent upon organic acid producing fungus type. Fungal enzymatic conversion of lignocellulosic is beneficial over other physiochemical processes. Laccases, the copper containing proteins oxidize a broad spectrum of inorganic as well as organic compounds but most specifically phenolic compounds by radical catalyzed mechanism. Similarly, lignin peroxidases (LiP), the heme containing proteins perform a vital part in oxidizing a wide variety of aromatic compounds with H2O2. Lignin depolymerization yields value-added compounds, the important ones are BTX (Benzene, Xylene and Toluene) and phenols as well as certain polymers like polyurethane and carbon fibers. Thus, this review will provide a concept that biological modifications of lignin using acidophilic microbes can generate certain value added and environment friendly chemicals.


Author(s):  
Rehman Javaid ◽  
Aqsa Sabir ◽  
Nadeem Sheikh ◽  
Muhammad Ferhan

Lignocellulosic feedstock (cellulose, hemicellulose and lignin) has been used for a variety of purposes. Among them, lignin can produce value-added chemicals having phenyl-propanoid subunits known as core lignin, possessing either C-C bonds or ether linkages. It can be depolymerized by microbial activity together with certain enzymes (laccases and peroxidases). Both acetic acid and formic acid production by certain fungi contribute significantly to lignin depolymerization. Natural organic acids production by fungi has many key roles in nature that are strictly dependent upon organic acid producing fungus type. Enzymatic conversion of lignocellulosic is beneficial over other physiochemical processes. Laccases, the copper containing proteins oxidize a broad spectrum of inorganic as well as organic compounds but most specifically phenolic compounds by radical catalyzed mechanism. Similarly, lignin peroxidases (LiP), the heme containing proteins perform a vital part in oxidizing a wide variety of aromatic compounds with H2O2. Lignin depolymerization yields polyaromatics, the important ones are BTX (Benzene, Xylene and Toluene), found in several different configurations. However, most modern aromatics complexes enhance the production of p-xylene, benzene and sometimes o-xylene respectively. Thus, this review will provide a concept that chemical and biological modifications of lignin yield certain value added and environment friendly chemicals.


Author(s):  
Marta Goliszek ◽  
Beata Podkościelna

<p>The overutilization of fossil fuels will inevitably cause the global environmental problems and dwindling of available resources. For that reason, identifying renewable sustainable alternatives has attracted an increasing attention. Lignocellulosic biomass has been considered to be one of the most logical feedstock to replace traditional fossil resources as one of the most accessible renewable forms of carbon. One of the primary components of lignocellulosic biomass, next to hemicellulose and cellulose is lignin. It is a by-product in paper and pulp industry. Lignin is mainly used as fuel directly, without further utilization which is suggested to be a waste of natural resources. With this purpose, the valorization of lignin into value-added products needs particular attention of researchers. This review article focuses on chosen possible applications of lignin in chemical industry.</p>


2021 ◽  
Author(s):  
Chikako Asada ◽  
Sholahuddin ◽  
Yoshitoshi Nakamura

Recently, plant biomass has been attracting attention due to global warming and the depletion of fossil fuels. Lignocellulosic biomass (i.e., wood, straw, and bagasse) is attracting attention as an abundant renewable resource that does not compete with the food resources. It is composed of cellulose, hemicellulose, and lignin and is a potential resource that can be converted into high-value-added substances, such as biofuels, raw materials for chemical products, and cellulose nanofibers. However, due to its complicated structure, an appropriate pretreatment method is required for developing its biorefinery process. Steam explosion is one of the simplest and environmentally friendly pretreatments to decompose lignin structure, which converts cellulose into low-molecular-weight lignin with high efficiency. It has received significant attention in the field of not only biofuel but also biochemical production. Steam explosion involves the hydrolysis of plant biomass under high-pressure steam and the sudden release of steam pressure induces a shear force on the plant biomass. Moreover, it is a green technology that does not use any chemicals. Thus, a steam explosion-based biorefinery system is highly effective for the utilization of lignocellulosic into useful materials, such as ethanol, methane gas, antioxidant material, epoxy resin, and cellulose nanofiber.


2022 ◽  
Vol 9 ◽  
Author(s):  
Yumei Jian ◽  
Ye Meng ◽  
Hu Li

Increasing fossil fuels consumption and global warming have driven the global revolution towards renewable energy sources. Lignocellulosic biomass is the main source of renewable carbon-based fuels. The abundant intermolecular linkages and high oxygen content between cellulose, hemicellulose, and lignin limit the use of traditional fuels. Therefore, it is a promising strategy to break the above linkages and remove oxygen by selective catalytic cracking of C–O bond to further transform the main components of biomass into small molecular products. This mini-review discusses the significance of selectivity control in C–O bond cleavage with well-tailored catalytic systems or strategies for furnishing biofuels and value-added chemicals of high efficiency from lignocellulosic biomass. The current challenges and future opportunities of converting lignocellulose biomass into high-value chemicals are also summarized and analyzed.


2019 ◽  
Vol 135 ◽  
pp. 251-259 ◽  
Author(s):  
Yan Ma ◽  
Jingxin Wang ◽  
Weihong Tan ◽  
Jianchun Jiang ◽  
Junming Xu ◽  
...  

2020 ◽  
Vol 6 (2) ◽  
pp. 120-134 ◽  
Author(s):  
Pranav D. Parakh ◽  
Sonil Nanda ◽  
Janusz A. Kozinski

Background: The development of viable alternative fuel sources is assuming a new urgency in the face of climate change and environmental degradation linked to the escalating consumption of fossil fuels. Lignocellulosic biomass is composed primarily of high-energy structural components such as cellulose, hemicellulose and lignin. The transformation of lignocellulosic biomass to biofuels requires the application of both pretreatment and conversion technologies. Methods: Several pretreatment technologies (e.g. physical, chemical and biological) are used to recover cellulose, hemicellulose and lignin from biomass and begin the transformation into biofuels. This paper reviews the thermochemical (e.g. pyrolysis, gasification and liquefaction), hydrothermal (e.g. subcritical and supercritical water gasification and hydrothermal liquefaction), and biological (e.g. fermentation) conversion pathways that are used to further transform biomass feedstocks into fuel products. Results: Through several thermochemical and biological conversion technologies, lignocellulosic biomass and other organic residues can produce biofuels such as bio-oils, biochar, syngas, biohydrogen, bioethanol and biobutanol, all of which have the potential to replace hydrocarbon-based fossil fuels. Conclusions: This review paper describes the conversion technologies used in the transformation of biomass into viable biofuels. Biofuels produced from lignocellulosic biomass and organic wastes are a promising potential clean energy source with the potential to be carbon-neutral or even carbonnegative.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mahdieh Sharifi ◽  
Ramyakrishna Pothu ◽  
Rajender Boddula ◽  
Inamuddin

Background: There is a developing demand for innovation in petroleum systems replacements. Towards this aim, lignocellulosic biomass suggested as a possible sustainable source for the manufacturing of fuels and produced chemicals. The aims of this paper are to investigate different kinds of β-O-4 lignin model compounds for the production of value-added chemicals in presence of ionic liquids. Especially, a cheap β-O-4 lignin model Guaiacol glycerol ether (GGE) (Guaifenesin) is introduced to produce valuable chemicals and novel products. Methods: Research related to chemical depolymerization of lignocellulosic biomass activity is reviewed, the notes from different methods such as thermal and microwave collected during at least 10 years. So, this collection provides a good source for academic research and it gives an efficient strategy for the manufacturing of novel value-added chemicals at an industrial scale. Results: This research presented that ionic liquid microwave-assisted is a power saving, cost efficient, fast reaction, and clean way with high selectively and purity for production of high value chemicals rather that conversional heating. Guaiacol and catechol are some of these valuable chemicals that is produced from β-O-4 lignin model compounds with high word demands that are capable to produce in industry scale. Conclusion: The β-O-4 lignin model compounds such as Guaiacol glycerol ether (GGE) (Guaifenesin) are good platform for developing food materials, perfumery, biorefinery, and pharmaceutical industry by ionic liquids-assisted lignin depolymerization method.


2021 ◽  
Author(s):  
Rajiv CHANDRA RAJAK ◽  
Pathikrit Saha ◽  
Mamata S Singhvi ◽  
Darae Kwak ◽  
Danil Kim ◽  
...  

Pretreatment of lignocellulosic biomass to specifically depolymerise lignin moieties without loss of carbohydrates as well as to minimize the generation of harmful intermediates during the process is a major challenge...


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1234
Author(s):  
Zhiwei Jiang ◽  
Di Hu ◽  
Zhiyue Zhao ◽  
Zixiao Yi ◽  
Zuo Chen ◽  
...  

Efficient conversion of renewable biomass into value-added chemicals and biofuels is regarded as an alternative route to reduce our high dependence on fossil resources and the associated environmental issues. In this context, biomass-based furfural and levulinic acid (LA) platform chemicals are frequently utilized to synthesize various valuable chemicals and biofuels. In this review, the reaction mechanism and catalytic system developed for the generation of furfural and levulinic acid are summarized and compared. Special efforts are focused on the different catalytic systems for the synthesis of furfural and levulinic acid. The corresponding challenges and outlooks are also observed.


Sign in / Sign up

Export Citation Format

Share Document