scholarly journals Recent Advances in Applications of Acidophilic Fungal Microbes for Bio-Chemicals

Author(s):  
Rehman Javaid ◽  
Aqsa Sabir ◽  
Nadeem Sheikh ◽  
Muhammad Ferhan

The processing of fossil fuels is the major environmental issue today which should be lessen. Biomass is gaining much interest these days as an alternate to energy generation. Lignocellulosic biomass (cellulose, hemicellulose and lignin) is abundant and has been used for a variety of purposes. Among them, the lignin polymer having phenyl-propanoid subunits linked together through C-C bonds or ether linkages, can produce numerous chemicals. It can be depolymerized by microbial activity together with certain enzymes (laccases and peroxidases). Both acetic acid and formic acid production by certain fungi contribute significantly to lignin depolymerization. Natural organic acids production by fungi has many key roles in nature that are strictly dependent upon organic acid producing fungus type. Fungal enzymatic conversion of lignocellulosic is beneficial over other physiochemical processes. Laccases, the copper containing proteins oxidize a broad spectrum of inorganic as well as organic compounds but most specifically phenolic compounds by radical catalyzed mechanism. Similarly, lignin peroxidases (LiP), the heme containing proteins perform a vital part in oxidizing a wide variety of aromatic compounds with H2O2. Lignin depolymerization yields value-added compounds, the important ones are BTX (Benzene, Xylene and Toluene) and phenols as well as certain polymers like polyurethane and carbon fibers. Thus, this review will provide a concept that biological modifications of lignin using acidophilic microbes can generate certain value added and environment friendly chemicals.

Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 786 ◽  
Author(s):  
Rehman Javaid ◽  
Aqsa Sabir ◽  
Nadeem Sheikh ◽  
Muhammad Ferhan

Processing of fossil fuels is the major environmental issue today. Biomass utilization for the production of chemicals presents an alternative to simple energy generation by burning. Lignocellulosic biomass (cellulose, hemicellulose and lignin) is abundant and has been used for variety of purposes. Among them, lignin polymer having phenyl-propanoid subunits linked together either through C-C bonds or ether linkages can produce chemicals. It can be depolymerized by fungi using their enzyme machinery (laccases and peroxidases). Both acetic acid and formic acid production by certain fungi contribute significantly to lignin depolymerization. Fungal natural organic acids production is thought to have many key roles in nature depending upon the type of fungi producing them. Biological conversion of lignocellulosic biomass is beneficial over physiochemical processes. Laccases, copper containing proteins oxidize a broad spectrum of inorganic as well as organic compounds but most specifically phenolic compounds by radical catalyzed mechanism. Similarly, lignin peroxidases (LiP), heme containing proteins perform a vital part in oxidizing a wide variety of aromatic compounds with H2O2. Lignin depolymerization yields value-added compounds, the important ones are aromatics and phenols as well as certain polymers like polyurethane and carbon fibers. Thus, this review will provide a concept that biological modifications of lignin using acidophilic fungi can generate certain value added and environmentally friendly chemicals.


Author(s):  
Rehman Javaid ◽  
Aqsa Sabir ◽  
Nadeem Sheikh ◽  
Muhammad Ferhan

Lignocellulosic feedstock (cellulose, hemicellulose and lignin) has been used for a variety of purposes. Among them, lignin can produce value-added chemicals having phenyl-propanoid subunits known as core lignin, possessing either C-C bonds or ether linkages. It can be depolymerized by microbial activity together with certain enzymes (laccases and peroxidases). Both acetic acid and formic acid production by certain fungi contribute significantly to lignin depolymerization. Natural organic acids production by fungi has many key roles in nature that are strictly dependent upon organic acid producing fungus type. Enzymatic conversion of lignocellulosic is beneficial over other physiochemical processes. Laccases, the copper containing proteins oxidize a broad spectrum of inorganic as well as organic compounds but most specifically phenolic compounds by radical catalyzed mechanism. Similarly, lignin peroxidases (LiP), the heme containing proteins perform a vital part in oxidizing a wide variety of aromatic compounds with H2O2. Lignin depolymerization yields polyaromatics, the important ones are BTX (Benzene, Xylene and Toluene), found in several different configurations. However, most modern aromatics complexes enhance the production of p-xylene, benzene and sometimes o-xylene respectively. Thus, this review will provide a concept that chemical and biological modifications of lignin yield certain value added and environment friendly chemicals.


Nanoscale ◽  
2021 ◽  
Author(s):  
Wei Shao ◽  
Xiaodong Zhang

Carbon dioxide (CO2) from the excessive consumption of fossil fuels has exhibited a huge threat to the planet’s ecosystem. Electrocatalytic CO2 reduction into value-added chemicals have been regarded as a...


2014 ◽  
Vol 59 (3) ◽  
pp. 575-590 ◽  
Author(s):  
Piotr Czaja ◽  
Paweł Kamiński ◽  
Jerzy Klich ◽  
Antoni Tajduś

Abstract Learning to control fire changed the life of man considerably. Learning to convert the energy derived from combustion of coal or hydrocarbons into another type of energy, such as steam pressure or electricity, has put him on the path of scientific and technological revolution, stimulating dynamic development. Since the dawn of time, fossil fuels have been serving as the mankind’s natural reservoir of energy in an increasingly great capacity. A completely incomprehensible refusal to use fossil fuels causes some local populations, who do not possess a comprehensive knowledge of the subject, to protest and even generate social conflicts as an expression of their dislike for the extraction of minerals. Our times are marked by the search for more efficient ways of utilizing fossil fuels by introducing non-conventional technologies of exploiting conventional energy sources. During apartheid, South Africa demonstrated that cheap coal can easily satisfy total demand for liquid and gaseous fuels. In consideration of current high prices of hydrocarbon media (oil and gas), gasification or liquefaction of coal seems to be the innovative technology convergent with contemporary expectations of both energy producers as well as environmentalists. Known mainly from literature reports, underground coal gasification technologies can be brought down to two basic methods: - shaftless method - drilling, in which the gasified seam is uncovered using boreholes drilled from the surface, - shaft method, in which the existing infrastructure of underground mines is used to uncover the seams. This paper presents a hybrid shaft-drilling approach to the acquisition of primary energy carriers (methane and syngas) from coal seams located at great depths. A major advantage of this method is the fact that the use of conventional coal mining technology requires the seams located at great depths to be placed on the off-balance sheet, while the hybrid method of underground gasification enables them to become a source of additional energy for the economy. It should be noted, however, that the shaft-drilling method cannot be considered as an alternative to conventional methods of coal extraction, but rather as a complementary and cheaper way of utilizing resources located almost beyond the technical capabilities of conventional extraction methods due to the associated natural hazards and high costs of combating them. This article presents a completely different approach to the issue of underground coal gasification. Repurposing of the already fully depreciated mining infrastructure for the gasification process may result in a large value added of synthesis gas production and very positive economic effect.


2021 ◽  
Author(s):  
M. Amin Farkhondehfal ◽  
Juqin Zeng

The CO2 that comes from the use of fossil fuels accounts for about 65% of the global greenhouse gas emission, and it plays a critical role in global climate changes. Among the different strategies that have been considered to address the storage and reutilization of CO2, the transformation of CO2 into chemicals and fuels with a high added-value has been considered a winning approach. This transformation is able to reduce the carbon emission and induce a “fuel switching” that exploits renewable energy sources. The aim of this chapter is to categorize different heterogeneous electrocatalysts which are being used for CO2 reduction, based on the desired products of the above mentioned reactions: from formic acid and carbon monoxide to methanol and ethanol and other possible by products. Moreover, a brief description of the kinetic and mechanism of the CO2 reduction reaction) and pathways toward different products have been discussed.


Currently the Biggest threat to environment and public health is Air Pollution which is caused by emissions of hydrocarbons, nitrogen oxides, carbon oxides and sulphur oxides by burning of fossil fuels. In recent years consumption of fossil fuels by various factories has rapidly increased that has let for the search of alternative fuels. These fuels are also known as non-conventional fuels which can be used as a substitute for conventional fuels Algae oil is one of the promising potential sources of bio-fuels generated from microbes. It is generally preferred because it is sustainable and environment-friendly oil which have numerous advantages. So the algae oil has used for performance and emission test on a diesel engine. The blends have been made for testing B5, B10. In which 5% of methanol has mixed and others are raw algae oil (5% for B5 and 10% for B10) and Diesel (90% for B5 and 85% for B10). The Kirlosker Engine with 6.97 HP (5.2KW)@1500rpm is used for Performance analyzing. Parallels AVL emission analyzer and smoke detector were connected with the exhaust of the engine. All values of gases were displayed and compared.


1997 ◽  
Vol 37 (1) ◽  
pp. 722
Author(s):  
N.G. Grollman

The oil and gas reserves of Australia and the East Asian region fall well short of the region's long-term requirements, even for a scenario that phases out all fossil fuels by the end of the 21st century. There is, therefore, no contradiction between vigorous exploration for oil and gas and the process of transition to renewable energy sources. However, to be an independent player in environmental policy-making, the Australian petroleum exploration industry should focus on its particular role within the energy sector as a whole, whose nature will change radically over the next several decades. This role will combine concerns over long term oil supply security with, in particular, the objective of reducing greenhouse gas emissions from oil and gas consumption to levels commensurate with Australia's international obligations. The role extends to Australian involvement in the region as a whole through the accrual of emissions credits from projects implemented jointly with developing countries. It also envisages that Australian explorers, especially those focussed on gas, will form alliances with downstream companies, power generators, appliance manufacturers and energy marketers as links in an integrated chain of operations with value added and emissions reduced at each stage. This re-orientation should lead the industry to question the extent to which its interests correspond with those of the coal and mineral industries, which do not face the same resource limitations.


2012 ◽  
Vol 52 (No. 4) ◽  
pp. 136-144
Author(s):  
J. Homola ◽  
B. Groda

An expert estimate of the weight of emissions produced in agriculture has been up to now made only through a final counting to the total REZZO 4 emission balance in the category of &ldquo;other mobile sources&rdquo; The existing situation is however unbearable since a proper methodology to determine the production of emissions in agriculture, i.e. in the department with a considerable consumption of fossil fuels, is still missing. The solution consists in a more precise specification of the weight of generated limited pollutants (CO, NO<sub>x</sub>, SO<sub>2</sub>, PM and VOC including CO<sub>2</sub>) in the department of agriculture on the basis of the measured annual consumption of fuels in agriculture and with using the emission factors of fuels. Calculated results are compared with the original values finally counted for the REZZO 4 category of &ldquo;other mobile sources&rdquo; in 2000 and 2001 (Adamec 2002; Adamec et el. 2003). The calculation revealed that the weight production of individual pollutants in 2000 and 2001 reached only 28% and 27% for CO, 52% and 50% for NO<sub>x</sub>, 69% and 66% for SO<sub>2</sub>, 87% and 83% for PM, and 26% and 24% for VOC of the original estimates with final counts and was therefore much lower. The share of agriculture in the weight production of emissions from mobile sources in 2000 and 2001 was 3.1% and 3.1% for CO, 11.5% and 11.5% for NO<sub>x</sub>, 19.8% and 18.8% for SO<sub>2</sub>, 38.3% and 34.6% for PM, and 3.5% and 3.6% for VOC. The development of weight production for individual pollutants in the period from 1995&ndash;2005 is expressed by means of regression equations. Coefficients of reliability indicate that the measure of reliability of the interval determined by calculation is much higher than that of the reliability interval determined by values estimated through final counting that appear incidental. There are increasing efforts today focused on the replacement of diesel oil as a traditional fossil fuel in agriculture with biodiesel oil as a more environment-friendly fuel. The second part of results includes a monitoring of the impact of biodiesel oil emissions in cases where diesel oil was replaced by this ecological fuel in agriculture in the period from 2000&ndash;2005. It follows from the analysis that the weight production of pollutants in 2000&ndash;2005 would have been reduced by 4% in CO, by 28% in SO<sub>2</sub>, by 52% in PM and by 4% in VOC while an increase by 20% and 32% would have been recorded in CO<sub>2</sub> and NO<sub>x</sub>, respectively. Regression equations are used to express the development of the weight production of individual diesel oil and biodiesel oil pollutants in the period from 2000&ndash;2005. Reliability coefficients that are of constant character indicate that the development of the weight of pollutants from diesel oil replicates the development of biodiesel oil pollutants. The significance of achieved results consists in the provision of a more accurate general balance of emissions from one of so called other mobile sources in Czech Republic (apart from the department of transport), thus contributing among other things to a more accurate expression of the total weight of emission production within REZZO 4.&nbsp;


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1795
Author(s):  
Juliana M. Jardim ◽  
Peter W. Hart ◽  
Lucian Lucia ◽  
Hasan Jameel

Lignin is an abundant, renewable, and relatively cheap biobased feedstock that has potential in energy, chemicals, and materials. Kraft lignin, more specifically, has been used for more than 100 years as a self-sustaining energy feedstock for industry after which it has finally reached more widespread commercial appeal. Unfortunately, hardwood kraft lignin (HWKL) has been neglected over these years when compared to softwood kraft lignin (SWKL). Therefore, the present work summarizes and critically reviews the research and development (R&D) dealing specifically with HWKL. It will also cover methods for HWKL extraction from black liquor, as well as its structure, properties, fractionation, and modification. Finally, it will reveal several interesting opportunities for HWKL that include dispersants, adsorbents, antioxidants, aromatic compounds (chemicals), and additives in briquettes, pellets, hydrogels, carbon fibers and polymer blends and composites. HWKL shows great potential for all these applications, however more R&D is needed to make its utilization economically feasible and reach the levels in the commercial lignin market commensurate with SWKL. The motivation for this critical review is to galvanize further studies, especially increased understandings in the field of HWKL, and hence amplify much greater utilization.


2003 ◽  
Vol 44 (27) ◽  
pp. 5099-5101 ◽  
Author(s):  
Subbarayappa Adimurthy ◽  
Gadde Ramachandraiah ◽  
Pushpito K. Ghosh ◽  
Ashutosh V. Bedekar

Sign in / Sign up

Export Citation Format

Share Document